

Rules of Thumb in Data Engineering

Jim Gray, Prashant Shenoy

December 1999

Revised March 2000

Technical Report
MS-TR-99-100

Microsoft Research
Advanced Technology Division

Microsoft Corporation
One Microsoft Way

Redmond, WA. 98052

© 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE. This document can be found in the Proceedings of 16th In-
ternational Conference on Data Engineering, pp.3-12.

0.01

0.1

1

10

100

1000

10000

100000

1000000

84 88 92 96 00 04

tpi
kbpi
MBps
Gbpsi

Magnetic Disk Parameters vs Time

year

Figure 1: Disk capacity has improved 1,000 fold in the
last 15 years, consistent with Moore’s law, but the transfer
rate MBps has improved only 40x in the same time. The
metrics are tracks per inch (tpi), thousands of bits per linear
inch of track (kbpi), mega bytes per second as the media
spins (MBps), and gigabits per square inch (Gbpsi).

Rules of Thumb in Data Engineering
Jim Gray, Prashant Shenoy

Microsoft Research, U. Mass, Amherst.
Gray@Microsoft.com, shenoy@cs.umass.edu

Abstract
This paper reexamines the rules of thumb for the design
of data storage systems. Briefly, it looks at storage, proc-
essing, and networking costs, ratios, and trends with a
particular focus on performance and price/performance.
Amdahl’s ratio laws for system design need only slight
revision after 35 years—the major change being the in-
creased use of RAM. An analysis also indicates storage
should be used to cache both database and web data to
save disk bandwidth, network bandwidth, and people’s
time. Surprisingly, the 5-minute rule for disk caching
becomes a cache-everything rule for web caching.

1. Introduction

We engineer data using intuition and rules of thumb.
Many of these rules are folklore. Given the rapid changes
in technology, these rules need to be constantly re-
evaluated.

This article is our attempt to document some of the main
rules we use in engineering database systems. Since we
have to design for the future, the article also assesses
technology trends and predicts the sizes of future systems.

2. Storage performance and price

Many rules of thumb are a consequence of Moore’s

Law, which posits that circuit densities increase four fold
every three years. That means that memories get four
times larger each three years, or about 100x per decade.
It also means that in-memory data grows at this rate: cre-
ating the need for an extra bit of addressing every 18
months. In 1970 we were comfortable with 16-bit address
spaces: it was rare to find a machine with a mega-word of
memory. Thirty years later we need 20 extra address bits
to address the 64 GB memories (36 bit addresses) found
in the larger computers on the market. Today most com-
puter architectures give 64-bit logical addressing (e.g.

MIPS, Alpha, PowerPC, SPARC, Itanium) or 96-bit (e.g.
AS400) addressing. Physical addressing is 36-bits to 40-
bits, and growing a bit per 18 months. At this rate it will
take two or three decades to exceed 64-bit addressing.

Moore’s Law originally applied only to random ac-
cess memory (RAM). It has been generalized to apply to
microprocessors and to disk storage capacity. Indeed,
disk capacity has been improving by leaps and bounds; it
has improved 100 fold over the last decade. The mag-
netic aerial density has gone from 20 Mbpsi (megabits per
square inch in 1985), to 35 Gbpsi late in 1999. Disks spin
three times faster now, but they are also 5 times smaller
than they were 15 years ago, so the data rate has im-
proved only 30 fold (see Figure 1). Today, disks can
store over 70 GB, have access times of about 10 millisec-
onds (~ 120 (Kaps kilobyte accesses per second)), and
transfer rates of about 25MBps (~ 20 Maps (megabyte
accesses per second)) and a scan time of 45 minutes [1].
These disks cost approximately 42 k$/TB today (15
k$/TB for lower-performance IDE drives packaged, pow-
ered, and network served) [2]. Within 5 years, the same
form-factor should be storing nearly ½ terabyte, support
150 Kaps, and have a transfer rate of 75 MBps. At that
rate, it will take nearly 2 hours to scan the disk. By then,
the prices should be nearing 1 k$/TB (including server).

This paper appeared in the proceedings of the IEEE International
Conference on Data Engineering, Feb 28-30, San Diego, CA.
Copyright © 2000 Institute of Electrical and Electronics Engineers,
Inc. Personal use of this material, including hard copy reproduc-
tion, is permitted. Permission to reprint, republish and/or distribute
this material in whole or in part for commercial purposes must be
obtained from the IEEE. For information on obtaining permission,
send an e-mail message to the Intellectual Property Rights Admin-
istrator.

 2

The ratio between disk capacity and disk accesses per
second is increasing more than 10x per decade. Also, the
capacity/bandwidth ratio is increasing by 10x per decade.
These changes have two implications: (1) disk accesses
become more precious; and (2) disk data must become
cooler (have fewer accesses per byte stored) [3].

We reduce disk accesses by (1) using a few large

transfers rather than many small ones, (2) favoring se-
quential transfers, and (3) using mirroring rather than
RAID5. To elaborate on thes e three points. (1) We can
reduce disk accesses by caching popular (hot) pages in
main memory, and writing a log of their changes to disk.
This reduces random reads, and converts random writes to
sequential (log) writes. Periodically, the written data
needs to be checkpointed to disk to minimize redo work
at restart, but often this checkpoint work can be done in
the background piggybacking on other IOs, and can be
sorted so that it is nearly sequential. These important
optimizations are used by database systems today. Over
the last decade, disk pages have grown from 2KB to 8KB
and are poised to grow again. In ten years, the typical
small transfer unit will probably be 64KB, and large
transfer units will be a megabyte or more. (2) A random
access costs a seek time, half a rotation time, and then the
transfer time. If the transfer is sequential, there is no seek
time, and if the transfer is an entire track, there is no rota-
tion time. So track-sized sequential transfers maximize
disk bandwidth and arm utilization. The move to sequen-
tial disk IO is well underway. As already mentioned,
caching, transaction logging, and log-structured file sys-
tems convert random writes into sequential writes. This
has already had large benefits for database systems and
operating systems. These techniques will continue to
yield benefits as disk accesses become even more pre-
cious. (3) Both RAID5 (parity) and RAID1 (mirrors)
offer fault-tolerant disk storage. Since IOs are the scarce
resource, one wants to optimize for IOs rather than for
space. The argument in favor of mirrors versus RAID5 is
that mirrored disks offer double the read bandwidth to
each data item, and they cost only one extra access for a
write. RAID5 uses up to four disk accesses to do a write,
and improves read bandwidth only if the data requests go
to different disks. RAID5 saves disk space (gigabytes) at
the expense of more IOs for disk writes.

Ten years ago, disks offered 50 Kaps (kilobyte ac-

cesses per second) to 1GB of data, and 5-minute disk scan
times. Current disks offer 120 Kaps to 80 GB of data with
a 45-minute scan times. This is 1 Kaps per 20MB in 1990
vs. 1 Kaps per 500MB now. So, modern disk data needs
to be at 25x colder than data of 10 years ago. In fact, all
the “hot” data of 1990 has migrated to RAM: disk cost
10$/MB in that era, five times what RAM costs today. So
1990s disk data can afford to live in RAM today. The use
of large main memories is one way to cool the data on

disk. Another way is to store the data multiple times and
spread the reads among the copies: again suggesting mir-
roring.

Meanwhile, there has been great progress in tape

storage: tapes now store 40 GB. A drive with a 15 tape
cartridges costs about 10k$ and stores about 600GB
nearline. These drives provide 6 MBps data rates, so the
scan time for all the cartridges is about 1.2 days. Such
nearline tape archives deliver approximately zero Kaps
and Maps (10-2 Kaps is typical). Such a tape archive is
half the cost per terabyte of disk storage, but tape does not
provide easy access to the data. The cost per random tape
access is about a hundred thousand times higher
 (100 accsses/second/1K$ disk versus .
 000.01 accesses/second/10,000$ tape). In five years,
this situation should be even more dramatic -- a million-
to-one is compelling. Tape capacities are expected to
improve faster than tape speed, and access time is ex-
pected to stay about the same, making the access problem
even more problematic: several days to scan a tape ar-
chive. This suggests nearline-tape will be purely archival.

Historically, tape, disk, and RAM have maintained
price ratios of about 1:10:1000. That is, disk storage has
been 10x more expensive than tape, and RAM has been
100x more expensive than disk. Indeed, today one can
buy a 40 GB tape cartridge for 80$, a 36 GB disk for
1200$, and 1 GB of memory for about 2400$ [4] (DELL
and SCSI are not the least expensive). These ratios trans-
late to 2$/GB, 32 $/GB and 2.4k$/GB giving a ratio of
1:16:1200 for storage.

But, when the offline tapes are put in a nearline tape
robot, the price per tape rises to 10K$/TB while packaged
disks are 30K$/TB. This brings the ratios back to
1:3:240. It is fair to say that the storage cost ratios are
now about 1:3:300.

The cost/MB of RAM declines with time: about 100x
per decade. Since disk and RAM have a 1:100 price ratio,
this price decline suggests that what is economical to put
on disk today will be economical to put in RAM in about
10 years.

A striking thing about these storage cost calculations
is that disk prices are approaching nearline tape prices.
By using RAID (mirroring or parity), administrators sac-
rifice disk storage capacity to protect against disk media
failures. Administrators are discovering that you may be
able to backup a terabyte to tape, but it takes a very long
time to restore a terabyte from tape. As they see petabyte
stores looming on the horizon, administrators are moving
to strategies that maintain multiple disk versions online so
that one never has to restore the database from tape. In-
creasingly, sites that need to be online all the time are

 3

replicating their entire state at a remote site, so that they
have two online copies of the data. If one site fails, the
other offers access to the data, and the failed site can re-
cover from the data stored at the second site. In essence,
disks are replacing tapes as backup devices. Tapes con-
tinue to be used for data interchange, but if Gilders’ Law
holds (see below), then someday all data interchange will
go over the Internet rather than over sneaker net. That
means tape will be less frequently used for data inter-
change.

Storage prices have dropped so low that the storage

management costs now exceed storage hardware costs
(similarly, PC management costs exceed the cost of the
hardware). In 1980, there was a rule of thumb that one
needed a data administrator for 1GB of storage. At that
time a GB of disk cost about a million dollars, and so it
made sense to have someone optimizing it and monitoring
the use of disk space. Today, a million dollars can buy 1
TB to 100 TB of disk storage (if you shop carefully). So,
today, the rule of thumb is that a person can manage 1 TB
to 100 TB of storage – with 10 TB being typical. The
storage management tools are struggling to keep up with
the relentless growth of storage. If you are designing for
the next decade, you need build systems that allow one
person to manage a 10 PB store.

Summarizing the Storage rules of thumb:
1. Moore’s Law: Things get 4x better every three years.
2. You need an extra bit of addressing every 18 months.
3. Storage capacities increase 100x per decade.
4. Storage device throughput increases 10x per decade.
5. Disk data cools 10x per decade.
6. Disk page sizes increase 5x per decade.
7. NearlineTape:OnlineDisk:RAM storage cost ratios

 are approximately 1:3:300.
8. In ten years RAM will cost what disk costs today.
9. A person can administer a million dollars of disk stor-

age: that is 30TB of storage today.
And two observations:
* Disks are replacing tapes as backup devices.
* On random workloads, disk mirroring is preferable to

RAID5 parity because it spends disk space (which is
plentiful) to save disk accesses (which are precious).

3. Amdahl’s system balance rules

Gene Amdahl is famous for many rules of thumb.
For data engineering, there are four famous ones [6]:
10. Amdahl’s parallelism law: If a computation has a

serial component S and a parallel component P, then
the maximum speedup is (S+P)/S.

11. Amdahl’s balanced system law: A system needs a bit
of IO per second for each instruction per second:
about 8 MIPS per MBps.

12. Amdahl’s memory law: ? ? 1: that is, in a balanced
system the MB/MIPS ratio, called alpha (?), is 1.

13. Amdahl’s IO law: Programs do one IO per 50,000
instructions.

How have Amdahl’s laws changed in the last 35 years?
The parallelism law is algebra, and so remains true and
very relevant to this day. The thing that is surprising is
that the other 35-year-old “laws” have survived while
speeds and sizes have grown by orders of magnitude and
while ratios have changed by factors of 10 and 100.

To re-evaluate Amdahl’s IO laws, one can look at the

Transaction Processing Performance Council benchmark
systems [4]. These systems are carefully tuned to have
the appropriate hardware for the benchmark. For exa m-
ple, the OLTP systems tend to use small disks because the
benchmarks are arm limited, and they tend to use the ap-
propriate number of controllers. The following paragraphs
evaluate Amdahl’s balanced system law: concluding that
with current technology it should be amended to say:

10. Amdahl’s revised balanced system law: A system

needs 8 MIPS/MBpsIO, but the instruction rate and
IO rate must be measured on the relevant workload.
(Sequential workloads tend to have low CPI (clocks
per instruction), while random workloads tend to
have higher CPI.)

12. Alpha (the MB/MIPS ratio) is rising from 1 to 4. This
trend will likely continue.

13. Random IO’s happen about once each 50,000 in-
structions. Based on rule 10, sequential IOs are
much larger and so the instructions per IO are much
higher for sequential workloads.

Amdahl’s balanced system law becomes more com-

plex to interpret in the new world of quad-issue pipelined
processors. Table 2 summarizes the following analysis.
In theory, the current 550 MHz Intel processors are able
to execute 2 billion instructions per second, so Amdahl’s
IO law suggests that each 550 MHz processor needs 160
MBps of disk bandwidth (all numbers rounded). How-
ever, on real benchmarks, these processors demonstrate
1.2 clocks per instruction (CPI) on sequential workloads
(TPC-D,H,R) and 2.2 clocks per instruction on random IO
workloads (TPC-C, W) [7,8]. These larger CPIs translate
to 450 MIPS on sequential and 260 MIPS on random
workloads. In turn, Amdahl’s law says these processors
need 60 MBps sequential IO bandwidth (~450/ 8) and 30
MBps random of IO bandwidth (~260/8) per cpu respec-
tively (for tpcH and tpcC). A recent tpcH benchmark by
HP [5] used eight 550 MHz processors with 176 disks.
This translates to 22 disks per cpu, or about 70 MBps of
raw disk bandwidth per cpu and 120 MBps of controller
bandwidth per cpu (consistent with Amdahl’s prediction
of 60MBps). Amdahl’s law predicts that system needs

 4

30MBps of IO bandwidth. Using 8KB pages and 100
IO/s per disk implies 38 disks per processor – a number
comparable to the 50 disks Dell actually used [4].

Both TPC results mentioned here use approximately
½ gigabyte of RAM per processor. Based on the MIPS
column of Table 2, the TPC systems have approximately
1 to 2 MB per MIPS. These are Intel IA32 processors
that are limited to 4 GB of memory. When one considers
HP, IBM, and Sun systems that do not have the 4GB
limit, there is between 1GB/cpu and 2.5GB/cpu (12 to 64
GB overall). This roughly translates to a range of be-
tween 2 MB/MIPS 6 MB/MIPS. As argued by many
main memory database advocates (e.g. [9]), as disk IOs
become more precious, we are moving towards relatively
larger main memories. Alpha, is rising from 1 to 4.

What about the execution interval? How many in-

structions are executed per IO? In essence, if 8 instruc-
tions are executed per byte of IO (law 10), and if 50 K
instructions are executed per IO (law 13), then IOs are
about 6 KB (~50/8). Again, there is a dichotomy between
sequential and random workloads: On TPC-C bench-
marks which do a lot of random IO, there are about 60 k
instructions between 8 KB IOs (~7*8) and on TPC-H
sequential workloads there are 200 k instructions between
64 KB IOs (~3*64).

In summary, Amdahl’s laws are still good rules-of-

thumb in sizing the IO and memory systems. The major
changes are that (1) the MIPS rate must be measured,
rather than assuming a CPI of 1 or less, (2) sequential IOs
are much larger than random IOs and hence the instruc-
tions per IO are much higher for sequential workloads, (3)
Alpha (the MB/MIPS ratio) is rising from 1 to 2 or 4.
This trend will likely continue. Given the 100x and
1,000x changes in device speeds and capacities, it is strik-
ing that Amdahl’s ratios continue to hold.

Interestingly, Hsu, Smith, and Young, came to simi-
lar conclusions in their very detailed study of TPC-C and
other workload behaviors [10]. Their excellent study
shows the wide spectrum of behaviors, both across work-
loads, and within a given workload.

4. Networking: Gilder’s Law

George Gilder predicted in 1995 that network band-
width would triple every year for the next 25 years [13].
So far his prediction seems to be approximately correct.
Individual fiber optic wavelength channels run at 40
Gbps. Wave-division multiplexing gives 10 or 20 chan-
nels per fiber. Multi-terabit links are operating in the
laboratory on a single fiber. Several companies are de-
ploying thousands of miles of fiber optic networks. We
are on the verge of having very high-speed (Gbps) wide-
area networks. When telecom deregulation and the sub-
sequent competition takes hold, these links will be very
inexpensive.
14. Gilder’s law: Deployed bandwidth triples every year.
15. Link bandwidth improves 4x every 3 years.

Paradoxically, the fastest link on the Microsoft cam-
pus is the 2.5 Gbps WAN link to the Pacific Northwest
GigaPOP. This inverts the speed ratios between WANS
and LANs. It takes three 1 Gbps Ethernet links to satu-
rate the WAN link. LAN speeds are about to rise to 1
Gbps, and then to 10 Gbps via switched point-to-point
networking.

Latency due to the speed of light will be with us for-

ever -- 60 ms round trip within North America, within
Europe, and within Asia. However, terabit-per-second
bandwidth will allow us to design systems that cache data
locally, and quickly access remote data if needed.

The cost of sending a message is [11]:

Time = senderCPU + receiverCPU + bytes/bandwidth
Traditionally, high-speed networking has been limited by
software overheads. The sender and receiver cpu costs
have typically been 10,000 instructions and then 10 in-
structions per byte. So to send 10 KB cost 120,000 in-
structions or something like a millisecond of cpu time.
The transmit time of 10,000 bytes on 100 Mbps Ethernet
is less than a millisecond – so the LAN was cpu limited,
not transmit time limited.

A rule of thumb for traditional message systems has been

16. A network message costs
10,000 instructions and 10 instructions per byte.

17. A disk IO costs
 5,000 instructions and 0.1 instructions per byte.

Why are disk IOs so efficient when compared to

network IO? After all, disk IOs are just messages to the
disk controller – a storage network message rather than a
LAN or WAN message. There have been substantial
strides in understanding that simple question. The net-
working community has offloaded much of the tcp/ip
protocol to the NICs (much as SCISI and IDE/ATA do),
and the networking software now uses memory more

Table 2: Amdahl’s balanced system law and the parameters
of two recent TPC benchmarks (www.tpc.org). The CPI
varies among the workloads, and the IO sizes also vary,
still, the instructions/byte are similar to Amdahl’s prediction
of eight instructions per byte (a bit of IO per instruction).

 MHz/
cpu CPI mips KB/

IO
IO/s/
disk Disks Disks/

cpu
MB/s/

cpu
Ins/
IO

Byte
Amdahl 1 1 1 6 8
TPC-C

= random 550 2.1 262 8 100 397 50 40 7

TPC-H
= sequential 550 1.2 458 64 100 176 22 141 3

 5

aggressively to buffer requests and correct errors. Check-
summing, fragmentation/assembly, and DMA have all
been added to high-speed NICs. Much of this work has
gone on under the banner of System Area Networking
(SAN) and the Virtual Interface Architecture [12]. The
current revision to rule of thumb is:
18. The cpu cost of a SAN network message is

 3,000 clocks and 1 clock per byte.

It is now possible to do an RPC in less than 10 mi-
croseconds, and to move a Gbps from node to node while
the processor is only half busy doing network (tcp/ip)
tasks. The network carries 100,000 packets per second
(300 M clocks according to rule 18) and 128 M bytes per
second (128 M clocks according to rule 18) so a 650 MHz
machine has 200 M clocks to spare for useful work.

Currently, it costs a more than a dollar to send

100MB via a WAN (see Table 7 of Odlyzko [14]), while
local disk and LAN access are 10,000 times less expen-
sive. This price gap is likely to decline to 10:1 or even
3:1 over the next decade. As suggested in subsequent
sections, when bandwidth is sufficient and inexpensive,
local disks will act as caches for commonly used data and
a buffer for pre -fetched data.

5. Caching: Location, Location, and Location

Processor clock speeds have been improving, as has
the parallelism within the processor. Modern processors
are capable of issuing four or more instructions in parallel
and pipelining instruction execution.

In theory, current quad-issue Intel processors are able

to execute two billion instructions per second -- 4 in-
structions per clock and 550 M clocks per second. In
practice, real benchmarks see CPI (clocks per instruction)
of 1 to 3. The CPI is rising as processor speeds outpace
memory latency improvements [6,7,8].

The memory subsystem cannot feed data to the proc-

essor fast enough to keep the pipelines full. Architects
have added 2-level and 3-level caches to the processors in
order to improve this situation, but if programs do not
have good data locality, there is not much the architects
can do to mask “compulsory” cache misses.

Software designers are learning that careful program

and data placement and cache sensitive algorithms with
good locality give 3x speedups on current processors. As
processor speeds continue to outpace memory speeds,
there will be increasing incentives for software designers
to look for algorithms with small instruction cache foot-
prints, with predictable branching behavior, and with
good or predictable data locality (i.e., clustered or sequen-
tial access).

There is a hardware trend to design huge (256 way)
multiprocessors that operate on a shared memory. These
systems are especially prone to instruction stretch in
which bus and cache interference from other processors
causes each processor to slow down. Getting good per-
formance from these massive SMPs will require careful
attention to data partitioning, data locality, and processor
affinity.

An alternative design opts for many nodes each with

its own IO and bus bandwidth and all using a dataflow
programming model and communicating via a high-speed
network [15]. These designs have given rise to very im-
pressive performance, for example, the sort speed of
computer systems has been doubling each year for the last
15 years through a combination of increased node speed
(about 60%/year) and parallelism (about 40%/year). The
1999 terabyte sort used nearly 2,000 processors and disks,
http://research.microsoft.com/~gray/sort_benchmark.

The argument for the many-little scalable design tries

to leverage the fact that mainframe:mini:commodity price
ratios are approximate 100:10:1. That is, mainframes cost
about 100 times more than commodity components, and
semi -custom mini-computers have a 10:1 markup over
commodity components (see prices for comparable sys-
tems at the www.tpc.org benchmarks). The cluster advo-
cates admit the many-little design is less efficient, but
they argue that it is more cost-effective.

There seems no good general rule of thumb for cpu-

caches beyond bigger-is-better and locality-is-better. But,
two good rules have evolved for disk data locality and
caching. It is possible to quantitatively estimate when
you should cache a disk page in memory: trading off
memory consumption against disk arm utilization.

As mentioned before, disk arms are precious. If a

disk costs $1200 and does 120 accesses per second, then a
disk access per second costs $10. It would be advanta-
geous to spend up to $10, to save one access per second.
Well, $10 buys about 10MB of RAM, so if a cache of that
size would indeed save one access per second, it would be
a good investment.

This suggests the question: How frequently must a

disk-resident object be accessed to justify caching it in
main memory?” When does the rent of RAM space bal-
ance the cost of an access? The analysis in [16] shows
that:
BreakEvenReferenceInterval (seconds) =

 PagesPerMBofRAM x PricePerDiskDrive
 AccessPerSecondPerDisk PricePerMBofDRAM

For randomly accessed data, the first term (call the
technology ratio) is approximately 1; the second term
(called the economic ratio) varies from 100 to 400 today.

 6

So, the breakeven interval is about 2 minutes to 5 minutes
for randomly accessed pages.

For sequentially accessed data the technology ratio is

approximately 0.1 (1MB “pages” and 10 pages per sec-
ond) so the break-even interval is 10 to 40 seconds.

This analysis gives the rules:
19. The 5-minute random rule: cache randomly accessed

disk pages that are re-used every 5 minutes.
20. The 1-minute sequential rule: cache sequentially ac-

cessed disk pages that are re-used within a minute.

Both of these time constants are rising slowly as

technology evolves.

A related rule that has not seen much use is that one

can spend 1 byte of RAM to save 1 MIPS. The argument
goes that RAM costs about 1$/MB and today one can get
100 extra MIPS from Intel for 100 extra dollars (ap-
proximately). So, the marginal cost of an instruction per
second is approximately the marginal cost of a byte. Fif-
teen years ago, the ratio was 10:1, but since then Intel and
VLSI has made processors much less expensive.
21. Spend 1 byte of RAM to save 1 instruction per sec-

ond.

Now consider web page caching. Logic similar to

the five-minute rule suggests when it pays to cache web
pages. The basic diagram is shown in Figure 2, where the
link speed varies from 100 KBps for intranets, to mo dem
speeds of 5 KBps, to wireless speeds of 1 KBps. In case
of a modem and wireless links, assume a local browser
cache. For high-speed links, the cache could either be a
browser cache or a proxy cache. In case of a proxy, as-
sume a fast connection between the user and the cache
(e.g., a 100Mb/s LAN), so that the time cost of accessing
data from a remote proxy disk is not significantly larger
than that from a local disk.

Given these assumptions consider three questions:
(1) How much does web caching imp rove response

times?
(2) When should a web page be cached?
(3) How large should a web cache be?

Assume that the average web object is 10KB. Define
 R_remote: response time to access an object at server.
 R_local: response time to access the object from cache.
 H: cache hit ratio (fraction of requests cache satisfies).

Then: Response_Time_Improvement =
 R_remote - (H * R_local + (1-H) * R_remote) =

H * (R_remote - R_local)

R_remote consists the server response time and the
download network time. The server response time (the
queuing delay and the service time) can range from sev-
eral hundred mi lliseconds to several seconds. Assume a
response time of 3 seconds.

The download time over the network depends on

network conditions and on link speeds. WAN Links are
typically shared, so the user bandwidth is smaller than the
typical link bandwidth (a bottlenecked link at the server
may further reduce the bandwidth/request). Assume that
the effective LAN/WAN bandwidth is 100KB/s; hence
time to transmit a 10KB object is a tenth of a second.
With these assumptions, the R_remote is dominated by
the 3 second server response time.

Modem bandwidth available on a dial-up link is 56

Kbs. With compression, the effective bandwidth is often
twice that, but there are also start/stop overheads. As-
sume an effective modem bandwidth of 5KB/s. Hence,
the modem transmit time for a 10 KB object is 2 seconds,
and R_remote is 5 seconds.

A mobile user on a wireless link gets 1KB/s, and so it
takes 10 seconds to download a 10KB object and
R_remote is 13 seconds. This is why servers for mobile
systems often compress the data to make the objects much
smaller (1KB rather than 10KB). Summarizing,
R_remote can be estimated as:
R_remote
 = 3 + .1 = 3s (high speed connection)
 = 3 + 2 = 5s (modem connection)
 = 3 + 10 = 13s (wireless connection)

R_local depends many details, but fundamentally lo-
cal access avoids the server-time wait (assumed to be 3
seconds). If the object is in the browser cache, local ac-
cess avoids the transmission time. If the local access
saves both, then the R_local is a fraction of a second.
Hence,
R_local = 100ms (browser cache)

= 300ms (proxy cache intranet)
= 2s (proxy cache modem)
= 10s (proxy cache wireless)

Proxy cache studies indicate that H_proxy_cache =

0.4 is an upper bound [17,18]. Anecdotal evidence sug-
gests browser hit ratios are smaller: assume.
H_browser_cache = 0.20. Assuming a 20$/hr human
cost, each second costs 0.55 cents. Using that number,
Table 3 computes the response-time savings using the
Response_Time_Improvement equation above.

client cache serverLinkclient cache serverLink

Figure 2. The client-side or proxy web cache improves response
time by eliminate link transmission times and server times.

 7

If a user makes ten requests per hour, and uses the
web 400 hours per year then the benefit of caching is be-
tween 3 and 14 cents per hour. For our hypothetical user,
this is a savings of between $12 and 48 per year. This
should be balanced against the cost of the disk to store the
pages – but as mentioned earlier, $12 will buy a LOT of
disk space. Indeed, our hypothetical user is accessing
4,000 10KB pages that are at most 40 MB. This is less
than a dollar’s worth of disk space.

Having computed the savings for a cached page (Ta-
ble 3), we can now compute the point where caching a
page begins to pay off. Table 4 has the calculation. The
first column of Table 4 estimates download costs from
Odlyzko [14 table 7] and assumes a wireless (1KBps) link
costs $0.1/minute ($6/hr). The second column of Table 4
assumes desktop disks cost 30$/GB and last 3 years,
while mobile storage devices are 30x more expensive.

The break-even cost of storing a page happens when
the storage rent matches the download cost. The
download cost has two components: the network time (A
in Table 4) and the people time C. The fourth column of
the table shows the calculation ignoring people’s time, C.
In that cas e the break-even interval is a year or more
rather than many decades. When people time is included,
the reference interval rises to many decades. In either
case, the table indicates that caching is very attractive:
cache a page if will be referenced within the next 5 years
(longer than the lifetime of the system (!)).

Certainly, our assumptions are questionable, but the

astonishing thing is that a very wide spectrum of assump-
tions concludes that a “cache everything” strategy is de-
sirable.

How will Table 4 change with time? Network
speeds are predicted to increase and network costs are
predicted to drop. Column 4, Time=A/B, may drop from
10 months to one day. But column 6, Time=(A+C)/B,
will grow as people’s time grows in value, while the cost
of technology (A and B) decline. In summary, technol-
ogy trends suggest that web page caching will continue
be popular, especially for bandwidth-limited mobile
devices.

How much would it cost to cache all web accesses
for a year? If users make 10 requests per hour with a hit
ratio of H=0.4 the cache gets 4 hits and 6 new objects

per user hour. For an 8-hour workday and 10KB objects,
this adds 480KB per user per day. If H=0.2, then it adds
640KB per user per day. In both cases, this is about a
penny a day. So, again we conclude a simple “cache eve-
rything” strategy is a good default.

These calculations suggest the simple rule:
22. Cache web pages if there is any chance they will be

re-referenced within their lifetime.

Web object lifetimes are bi-modal, or even tri-modal
in some cases. Studies show median lifetimes to be a few
days or few tens of days [19]. The average page has a 75-
day lifetime (ignoring the modalities and non-uniform
access.) A heuristic that recognized high-velocity pages
would both improve usability (by not showing stale
cached pages) and would save cache storage. This is a
area of active research and development.

A major assumption in these calculations is that

server performance will continue to be poor: 3 seconds on
average. Popular servers tend to be slow because web site
owners are not investing enough in servers and band-
width. With declining costs, web site owners could invest
more and reduce the 3-second response time to less than a
second. If that happens, then the web cache’s people cost
savings will evaporate, and the need for caching would be
purely to save network bandwidth and download time --
which we believe will only be a scarce resource for mo-
bile devices.

6. Summary

Data stores will become huge. Our biggest challenge
is to make it easy to access and manage them. Automat-
ing all the tasks of data organization, accesses, and pro-
tection.

Disk technology is overtaking tapes, but at the same

time disks are morphing into tape-like devices with pri-
marily sequential access to optimize the use of disk arms.
Meanwhile, RAM improvements encourage us to build
machines with massive main memory. Indeed, the main

Table 3: Shows the benefits of browser and proxy or client
caching (pennies saved) assuming people’s time is worth
20$/hr.
connection cache R_remote

seconds
R_local
seconds

H
hit
rate

People
Savings
¢/page

LAN proxy 3 0.3 .4 0.6
LAN browser 3 0.1 .2 0.3

Modem proxy 5 2 .4 0.7
Modem browser 5 0.1 .2 0.5
Mobile proxy 13 10 .4 0.7
Mobile browser 13 0.1 .2 1.4

Table 4: Caching is a very good deal: cache web pages if they
will be re -used within the few years.

 A
$/10 KB

download
network cost

B
$/10 KB

storage/mo

 Time =A/B
Break-even

cache
storage time

C
People Cost
Of download
$ (table 3)

Time=
(A+C)/B

Break Even

Internet/LAN 1e-4 8.E-06 13 months 0.02 184 years
Modem 2E-4 8.E-06 27 months 0.03 307 years
Wireless 1E-2 2.E-04 44 months 0.07 30 years

 8

change to Amdahl’s balanced system law is that alpha
(=MIPS/RAM size) is rising from 1 to 10.

Network bandwidth is improving at a rate that chal-

lenges many of our design assumptions. LAN/SAN soft-
ware is being streamlined so it is no longer the bottleneck.
This may well allow a re -centralization of computing.

Still, data caching is an important optimization. Disk

caching still follows the 5-minute random rule and the
one-minute sequential rule. Web caching encourages
designs that simply cache all pages.

7. Acknowledgments

We thank Dave Patterson of Berkeley and especially
Terrance Kelly of Michigan who both gave us very valu-
able criticism that improved the presentation and sharp-
ened our arguments.

8. References

[1] IBM UltraStar72, http://www.storage.ibm.com/ hard-

soft/diskdrdl/ultra/72zxdata.htm.
[2] Brewster Kahle, private communication, http://archive.org
[3] Data heat is the number of times the data is accessed per

second.
[4] Dell tpcC: http://www.tpc.org/results/individual_results

/Dell/ dell_8450_99112201_es.pdf
[5] HP tpcH: http://www.tpc.org/new_result/h-

result1.idc?id=100021501
[6] J. L. Hennessy, D.A. Patterson, Computer Architecture, a

Quantitative Approach. Morgan Kaufman, San Francisco,
1990, ISBN 1-55860-069-8

[7] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, W. E.
Baker, “Performance Characterization Of A Quad Pentium
Pro SM P Using OLTP Workloads,” ACM ISCA p. 15-26.
June 1998.

[8] A. Ailamaki, D. J. DeWitt, M. D. Hill, D. A. Wood.
“DBMSs On A Modern Processor: Where Does Time Go?”
VLDB 99, pp. 266-277, Sept 1999.

[9] H. Garcia-Molina, A. Park, L.R. Rogers: “Performance
Through Memory.” ACM SIGMETRICS, Performance
Evaluation Review 15(1), May 1987. pp. 122-131.

[10] Hsu, W.H., Smith, A.J., Young, H.C., “I/O Reference Be-
havior of Production Database Workloads and the TPC
Benchmarks -- An Analysis at the Logical Level.” TR
UCC/CSD-99-1071, UC Berkeley, Nov. 1999.

[11] J. Gray, “The Cost of Messages,” ACM PODC, 1988, p1-7
[12] Virtual Interface Architecture: http: //www.viarch.org
[13] G. Gilder, “Fiber Keeps Its Promise: Get ready. Bandwidt h

will triple each year for the next 25.” Forbes, 7 April 1997.
http://www.forbes.com/asap/97/0407/090.htm

[14] A. M. Odlyzko “The Economics of the Internet: Utility,
Utilization, Pricing, and Quality of Service,
http://www.research.att.com/~amo/doc/networks.html

[15] R.H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D.E.
Culler, J.M. Hellerstein, D.A. Patterson, “Rivers. Cluster
I/O with River: Making the Fast Case Common.” IOPADS
'99.

[16] J. Gray, G. Graefe, “The 5 minute rule, ten years later,”
SIGMOD Record 26(4): 63-68, 1997

[17] R. Tewari and M. Dahlin and H M. Vin and J. Kay, ”Be-
yond Hierarchies: Design Considerations for Distributed
Caching on the Internet”, IEEE ICDCS'99 June, 1999.

[18] A. Wolman and G. Voelker and N. Sharma and N. Card-
well, A. Karlin, H. Levy,”On the scale and performance of
cooperative web proxy caching”, ACM SOSP'99, pp.16--
21, Dec., 1999.

[19] J. Gwertzman, M. Seltzer, “World-Wide Web Cache Con-
sistency,” 1996 USENIX Annual Technical Conference,
Jan. 1996.

 [20] T. Kelley, D. Reeves, “Optimal Web Cache Sizing: Scal-
able Methods for Exact Solution,” Feb. 2000, to appear in
5th Int. Conf on Web Caching and Content Delivery Work-
shop, 22 May, Lisbon, Portugal.
http://ai.eecs.umich.edu/~tpkelly/papers/wcp.pdf

