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Figure 1:  Disk capacity has improved 1,000 fold in the 
last 15 years, consistent with Moore’s law, but the transfer 
rate MBps has improved only 40x in the same time.  The 
metrics are tracks per inch (tpi), thousands of bits per linear 
inch of track (kbpi), mega bytes per second as the media 
spins (MBps), and gigabits per square inch (Gbpsi). 
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Abstract 
This paper reexamines the rules of thumb for the design 
of data storage systems.  Briefly, it looks at storage, proc-
essing, and networking costs, ratios, and trends with a 
particular focus on performance and price/performance.  
Amdahl’s ratio laws for system design need only slight 
revision after 35 years—the major change being the in-
creased use of RAM.  An analysis also indicates storage 
should be used to cache both database and web data to 
save disk bandwidth, network bandwidth, and people’s 
time.  Surprisingly, the 5-minute rule for disk caching 
becomes a cache-everything rule for web caching. 

 
1. Introduction 
 
We engineer data using intuition and rules of thumb.  
Many of these rules are folklore.  Given the rapid changes 
in technology, these rules need to be constantly re-
evaluated.  
 
This article is our attempt to document some of the main 
rules we use in engineering database systems.  Since we 
have to design for the future, the article also assesses 
technology trends and predicts the sizes of future systems. 
 
2. Storage performance and price 

 
Many rules of thumb are a consequence of Moore’s 

Law, which posits that circuit densities increase four fold 
every three years. That means that memories get four 
times larger each three years, or about 100x per decade.  
It also means that in-memory data grows at this rate: cre-
ating the need for an extra bit of addressing every 18 
months.  In 1970 we were comfortable with 16-bit address 
spaces: it was rare to find a machine with a mega-word of 
memory.  Thirty years later we need 20 extra address bits 
to address the 64 GB memories (36 bit addresses) found 
in the larger computers on the market.  Today most com-
puter architectures give 64-bit logical addressing (e.g. 

MIPS, Alpha, PowerPC, SPARC, Itanium) or 96-bit (e.g. 
AS400) addressing.  Physical addressing is 36-bits to 40-
bits, and growing a bit per 18 months.  At this rate it will 
take two or three decades to exceed 64-bit addressing.   
 

Moore’s Law originally applied only to random ac-
cess memory (RAM).  It has been generalized to apply to 
microprocessors and to disk storage capacity.  Indeed, 
disk capacity has been improving by leaps and bounds; it 
has improved 100 fold over the last decade.  The mag-
netic aerial density has gone from 20 Mbpsi (megabits per 
square inch in 1985), to 35 Gbpsi late in 1999.  Disks spin 
three times faster now, but they are also 5 times smaller 
than they were 15 years ago, so the data rate has im-
proved only 30 fold (see Figure 1).  Today, disks can 
store over 70 GB, have access times of about 10 millisec-
onds (~ 120 (Kaps kilobyte accesses per second)), and 
transfer rates of about 25MBps (~ 20 Maps (megabyte 
accesses per second)) and a scan time of 45 minutes [1].  
These disks cost approximately 42 k$/TB today (15 
k$/TB for lower-performance IDE drives packaged, pow-
ered, and network served) [2].  Within 5 years, the same 
form-factor should be storing nearly ½ terabyte, support 
150 Kaps, and have a transfer rate of 75 MBps.  At that 
rate, it will take nearly 2 hours to scan the disk.  By then, 
the prices should be nearing 1 k$/TB (including server).   

___________________________________________________ 
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The ratio between disk capacity and disk accesses per 
second is increasing more than 10x per decade.  Also, the 
capacity/bandwidth ratio is increasing by 10x per decade.  
These changes have two implications: (1) disk accesses 
become more precious; and (2) disk data must become 
cooler (have fewer accesses per byte stored) [3].  

 
We reduce disk accesses by (1) using a few large 

transfers rather than many small ones, (2) favoring se-
quential transfers, and (3) using mirroring rather than 
RAID5.  To elaborate on thes e three points. (1) We can 
reduce disk accesses by caching popular (hot) pages in 
main memory, and writing a log of their changes to disk.  
This reduces random reads, and converts random writes to 
sequential (log) writes.  Periodically, the written data 
needs to be checkpointed to disk to minimize redo work 
at restart, but often this checkpoint work can be done in 
the background piggybacking on other IOs, and can be 
sorted so that it is nearly sequential.  These important 
optimizations are used by database systems today. Over 
the last decade, disk pages have grown from 2KB to 8KB 
and are poised to grow again.  In ten years, the typical 
small transfer unit will probably be 64KB, and large 
transfer units will be a megabyte or more. (2) A random 
access costs a seek time, half a rotation time, and then the 
transfer time.  If the transfer is sequential, there is no seek 
time, and if the transfer is an entire track, there is no rota-
tion time.  So track-sized sequential transfers maximize 
disk bandwidth and arm utilization.  The move to sequen-
tial disk IO is well underway.  As already mentioned, 
caching, transaction logging, and log-structured file sys-
tems convert random writes into sequential writes. This 
has already had large benefits for database systems and 
operating systems.  These techniques will continue to 
yield benefits as disk accesses become even more pre-
cious.  (3) Both RAID5 (parity) and RAID1 (mirrors) 
offer fault-tolerant disk storage. Since IOs are the scarce 
resource, one wants to optimize for IOs rather than for 
space. The argument in favor of mirrors versus RAID5 is 
that mirrored disks offer double the read bandwidth to 
each data item, and they cost only one extra access for a 
write.  RAID5 uses up to four disk accesses to do a write, 
and improves read bandwidth only if the data requests go 
to different disks. RAID5 saves disk space (gigabytes) at 
the expense of more IOs for disk writes.   

 
Ten years ago, disks offered 50 Kaps (kilobyte ac-

cesses per second) to 1GB of data, and 5-minute disk scan 
times. Current disks offer 120 Kaps to 80 GB of data with 
a 45-minute scan times.  This is 1 Kaps per 20MB in 1990 
vs. 1 Kaps per 500MB now.  So, modern disk data needs 
to be at 25x colder than data of 10 years ago.  In fact, all 
the “hot” data of 1990 has migrated to RAM: disk cost 
10$/MB in that era, five times what RAM costs today.  So 
1990s disk data can afford to live in RAM today.  The use 
of large main memories is one way to cool the data on 

disk.  Another way is to store the data multiple times and 
spread the reads among the copies: again suggesting mir-
roring. 

 
Meanwhile, there has been great progress in tape 

storage: tapes now store 40 GB.  A drive with a 15 tape 
cartridges costs about 10k$ and stores about 600GB 
nearline.  These drives provide 6 MBps data rates, so the 
scan time for all the cartridges is about 1.2 days. Such 
nearline tape archives deliver approximately zero Kaps 
and Maps (10-2 Kaps is typical).  Such a tape archive is 
half the cost per terabyte of disk storage, but tape does not 
provide easy access to the data.  The cost per random tape 
access is about a hundred thousand times higher 
     (100 accsses/second/1K$ disk versus             .  
      000.01 accesses/second/10,000$ tape).  In five years, 
this situation should be even more dramatic -- a million-
to-one is compelling.  Tape capacities are expected to 
improve faster than tape speed, and access time is ex-
pected to stay about the same, making the access problem 
even more problematic: several days to scan a tape ar-
chive.  This suggests nearline-tape will be purely archival. 
 

Historically, tape, disk, and RAM have maintained 
price ratios of about 1:10:1000.  That is, disk storage has 
been 10x more expensive than tape, and RAM has been 
100x more expensive than disk.  Indeed, today one can 
buy a 40 GB tape cartridge for 80$, a 36 GB disk for 
1200$, and 1 GB of memory for about 2400$ [4] (DELL 
and SCSI are not the least expensive).  These ratios trans-
late to 2$/GB, 32 $/GB and 2.4k$/GB giving a ratio of 
1:16:1200 for storage. 
 

But, when the offline tapes are put in a nearline tape 
robot, the price per tape rises to 10K$/TB while packaged 
disks are 30K$/TB.  This brings the ratios back to 
1:3:240.  It is fair to say that the storage cost ratios are 
now about 1:3:300.   
 

The cost/MB of RAM declines with time: about 100x 
per decade.  Since disk and RAM have a 1:100 price ratio, 
this price decline suggests that what is economical to put 
on disk today will be economical to put in RAM in about 
10 years. 
 

A striking thing about these storage cost calculations 
is that disk prices are approaching nearline tape prices.  
By using RAID (mirroring or parity), administrators sac-
rifice disk storage capacity to protect against disk media 
failures.  Administrators are discovering that you may be 
able to backup a terabyte to tape, but it takes a very long 
time to restore a terabyte from tape.  As they see petabyte 
stores looming on the horizon, administrators are moving 
to strategies that maintain multiple disk versions online so 
that one never has to restore the database from tape.  In-
creasingly, sites that need to be online all the time are 
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replicating their entire state at a remote site, so that they 
have two online copies of the data.  If one site fails, the 
other offers access to the data, and the failed site can re-
cover from the data stored at the second site.  In essence, 
disks are replacing tapes as backup devices.  Tapes con-
tinue to be used for data interchange, but if Gilders’ Law 
holds (see below), then someday all data interchange will 
go over the Internet rather than over sneaker net. That 
means tape will be less frequently used for data inter-
change. 

 
Storage prices have dropped so low that the storage 

management costs now exceed storage hardware costs 
(similarly, PC management costs exceed the cost of the 
hardware).  In 1980, there was a rule of thumb that one 
needed a data administrator for 1GB of storage.  At that 
time a GB of disk cost about a million dollars, and so it 
made sense to have someone optimizing it and monitoring 
the use of disk space.  Today, a million dollars can buy 1 
TB to 100 TB of disk storage (if you shop carefully).  So, 
today, the rule of thumb is that a person can manage 1 TB 
to 100 TB of storage – with 10 TB being typical.  The 
storage management tools are struggling to keep up with 
the relentless growth of storage.  If you are designing for 
the next decade, you need build systems that allow one 
person to manage a 10 PB store. 
 
Summarizing the Storage rules of thumb: 
1. Moore’s Law: Things get 4x better every three years. 
2. You need an extra bit of addressing every 18 months. 
3. Storage capacities increase 100x per decade. 
4. Storage device throughput increases 10x per decade. 
5. Disk data cools 10x per decade. 
6. Disk page sizes increase 5x per decade. 
7. NearlineTape:OnlineDisk:RAM storage cost ratios  

 are approximately 1:3:300. 
8. In ten years RAM will cost what disk costs today. 
9. A person can administer a million dollars of disk stor-

age: that is 30TB of storage today. 
And two observations: 
* Disks are replacing tapes as backup devices. 
* On random workloads, disk mirroring is preferable to 

RAID5 parity because it spends disk space (which is 
plentiful) to save disk accesses (which are precious). 

 
3. Amdahl’s system balance rules 
 

Gene Amdahl is famous for many rules of thumb.  
For data engineering, there are four famous ones [6]:   
10. Amdahl’s parallelism law: If a computation has a 

serial component S and a parallel component P, then 
the maximum speedup is (S+P)/S. 

11. Amdahl’s balanced system law: A system needs a bit 
of IO per second for each instruction per second: 
about 8 MIPS per MBps.   

12. Amdahl’s memory law: ?  ?  1: that is, in a balanced 
system the MB/MIPS ratio, called alpha (? ), is 1. 

13. Amdahl’s IO law: Programs do one IO per 50,000 
instructions. 

 
How have Amdahl’s laws changed in the last 35 years?  
The parallelism law is algebra, and so remains true and 
very relevant to this day.  The thing that is surprising is 
that the other 35-year-old “laws” have survived while 
speeds and sizes have grown by orders of magnitude and 
while ratios have changed by factors of 10 and 100.   

  
To re-evaluate Amdahl’s IO laws, one can look at the 

Transaction Processing Performance Council benchmark 
systems [4].  These systems are carefully tuned to have 
the appropriate hardware for the benchmark.  For exa m-
ple, the OLTP systems tend to use small disks because the 
benchmarks are arm limited, and they tend to use the ap-
propriate number of controllers. The following paragraphs 
evaluate Amdahl’s balanced system law: concluding that 
with current technology it should be amended to say:  

 
10. Amdahl’s revised balanced system law: A system 

needs 8 MIPS/MBpsIO, but the instruction rate and 
IO rate must be measured on the relevant workload. 
(Sequential workloads tend to have low CPI (clocks 
per instruction), while random workloads tend to 
have higher CPI.) 

12. Alpha (the MB/MIPS ratio) is rising from 1 to 4. This 
trend will likely continue. 

13. Random IO’s happen about once each 50,000 in-
structions.  Based on rule 10, sequential IOs are 
much larger and so the instructions per IO are much 
higher for sequential workloads. 

 
Amdahl’s balanced system law becomes more com-

plex to interpret in the new world of quad-issue pipelined 
processors.  Table 2 summarizes the following analysis.  
In theory, the current 550 MHz Intel processors are able 
to execute 2 billion instructions per second, so Amdahl’s 
IO law suggests that each 550 MHz processor needs 160 
MBps of disk bandwidth (all numbers rounded).  How-
ever, on real benchmarks, these processors demonstrate 
1.2 clocks per instruction (CPI) on sequential workloads 
(TPC-D,H,R) and 2.2 clocks per instruction on random IO 
workloads (TPC-C, W) [7,8].  These larger CPIs translate 
to 450 MIPS on sequential and 260 MIPS on random 
workloads.  In turn, Amdahl’s law says these processors 
need 60 MBps sequential IO bandwidth (~450/ 8) and 30 
MBps random of IO bandwidth (~260/8) per cpu respec-
tively (for tpcH and tpcC).  A recent tpcH benchmark by 
HP [5] used eight 550 MHz processors with 176 disks. 
This translates to 22 disks per cpu, or about 70 MBps of 
raw disk bandwidth per cpu and 120 MBps of controller 
bandwidth per cpu (consistent with Amdahl’s prediction 
of 60MBps). Amdahl’s law predicts that system needs 
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30MBps of IO bandwidth.  Using 8KB pages and 100 
IO/s per disk implies 38 disks per processor – a number 
comparable to the 50 disks Dell actually used [4].   
 

Both TPC results mentioned here use approximately 
½ gigabyte of RAM per processor.  Based on the MIPS 
column of Table 2, the TPC systems have approximately 
1 to 2 MB per MIPS.  These are Intel IA32 processors 
that are limited to 4 GB of memory.  When one considers 
HP, IBM, and Sun systems that do not have the 4GB 
limit, there is between 1GB/cpu and 2.5GB/cpu (12 to 64 
GB overall).  This roughly translates to a range of be-
tween 2 MB/MIPS 6 MB/MIPS.  As argued by many 
main memory database advocates (e.g. [9]), as disk IOs 
become more precious, we are moving towards relatively 
larger main memories.  Alpha, is rising from 1 to 4.   

 
What about the execution interval?  How many in-

structions are executed per IO?  In essence, if 8 instruc-
tions are executed per byte of IO (law 10), and if 50 K 
instructions are executed per IO (law 13), then IOs are 
about 6 KB (~50/8).  Again, there is a dichotomy between 
sequential and random workloads: On TPC-C bench-
marks which do a lot of random IO, there are about 60 k 
instructions between 8 KB IOs (~7*8) and on TPC-H 
sequential workloads there are 200 k instructions between 
64 KB IOs (~3*64). 

 
In summary, Amdahl’s laws are still good rules-of-

thumb in sizing the IO and memory systems.  The major 
changes are that (1) the MIPS rate must be measured, 
rather than assuming a CPI of 1 or less, (2) sequential IOs 
are much larger than random IOs and hence the instruc-
tions per IO are much higher for sequential workloads, (3) 
Alpha (the MB/MIPS ratio) is rising from 1 to 2 or 4.  
This trend will likely continue.  Given the 100x and 
1,000x changes in device speeds and capacities, it is strik-
ing that Amdahl’s ratios continue to hold. 
 

Interestingly, Hsu, Smith, and Young, came to simi-
lar conclusions in their very detailed study of TPC-C and 
other workload behaviors [10].  Their excellent study 
shows the wide spectrum of behaviors, both across work-
loads, and within a given workload. 

4. Networking: Gilder’s Law  
 

George Gilder predicted in 1995 that network band-
width would triple every year for the next 25 years [13].  
So far his prediction seems to be approximately correct.  
Individual fiber optic wavelength channels run at 40 
Gbps. Wave-division multiplexing gives 10 or 20 chan-
nels per fiber. Multi-terabit links are operating in the 
laboratory on a single fiber. Several companies are de-
ploying thousands of miles of fiber optic networks.  We 
are on the verge of having very high-speed (Gbps) wide-
area networks.  When telecom deregulation and the sub-
sequent competition takes hold, these links will be very 
inexpensive.   
14. Gilder’s law: Deployed bandwidth triples every year. 
15. Link bandwidth improves 4x every 3 years. 
 

Paradoxically, the fastest link on the Microsoft cam-
pus is the 2.5 Gbps WAN link to the Pacific Northwest 
GigaPOP.  This inverts the speed ratios between WANS 
and LANs.   It takes three 1 Gbps Ethernet links to satu-
rate the WAN link.  LAN speeds are about to rise to 1 
Gbps, and then to 10 Gbps via switched point-to-point 
networking.   

 
Latency due to the speed of light will be with us for-

ever -- 60 ms round trip within North America, within 
Europe, and within Asia.  However, terabit-per-second 
bandwidth will allow us to design systems that cache data 
locally, and quickly access remote data if needed.  

 
The cost of sending a message is [11]:  

Time = senderCPU + receiverCPU + bytes/bandwidth 
Traditionally, high-speed networking has been limited by 
software overheads.  The sender and receiver cpu costs 
have typically been 10,000 instructions and then 10 in-
structions per byte.  So to send 10 KB cost 120,000 in-
structions or something like a millisecond of cpu time.  
The transmit time of 10,000 bytes on 100 Mbps Ethernet 
is less than a millisecond – so the LAN was cpu limited, 
not transmit time limited. 
 
A rule of thumb for traditional message systems has been  

16.  A network message costs  
10,000 instructions and 10 instructions per byte. 

17. A disk IO costs 
 5,000 instructions and 0.1 instructions per byte. 
 
Why are disk IOs so efficient when compared to 

network IO?  After all, disk IOs are just messages to the 
disk controller – a storage network message rather than a 
LAN or WAN message.  There have been substantial 
strides in understanding that simple question.  The net-
working community has offloaded much of the tcp/ip 
protocol to the NICs (much as SCISI and IDE/ATA do), 
and the networking software now uses memory more 

Table 2: Amdahl’s balanced system law and the parameters 
of two recent TPC benchmarks (www.tpc.org).  The CPI 
varies among the workloads, and the IO sizes also vary, 
still, the instructions/byte are similar to Amdahl’s prediction 
of eight instructions per byte (a bit of IO per instruction). 

 MHz/ 
cpu CPI mips KB/ 

IO 
IO/s/ 
disk Disks Disks/ 

cpu 
MB/s/ 

cpu 
Ins/ 
IO  

Byte  
Amdahl 1 1 1 6     8 
TPC-C 

= random 550 2.1 262 8 100 397 50 40 7 

TPC-H 
= sequential 550 1.2 458 64 100 176 22 141 3 
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aggressively to buffer requests and correct errors.  Check-
summing, fragmentation/assembly, and DMA have all 
been added to high-speed NICs.  Much of this work has 
gone on under the banner of System Area Networking 
(SAN) and the Virtual Interface Architecture [12]. The 
current revision to rule of thumb is: 
18. The cpu cost of a SAN network message is  

   3,000 clocks and 1 clock per byte. 
 

It is now possible to do an RPC in less than 10 mi-
croseconds, and to move a Gbps from node to node while 
the processor is only half busy doing network (tcp/ip) 
tasks.  The network carries 100,000 packets per second 
(300 M clocks according to rule 18) and 128 M bytes per 
second (128 M clocks according to rule 18) so a 650 MHz 
machine has 200 M clocks to spare for useful work.  

 
Currently, it costs a more than a dollar to send 

100MB via a WAN (see Table 7 of Odlyzko [14]), while 
local disk and LAN access are 10,000 times less expen-
sive.  This price gap is likely to decline to 10:1 or even 
3:1 over the next decade.  As suggested in subsequent 
sections, when bandwidth is sufficient and inexpensive, 
local disks will act as caches for commonly used data and 
a buffer for pre -fetched data.  
 
5. Caching: Location, Location, and Location 
 

Processor clock speeds have been improving, as has 
the parallelism within the processor.  Modern processors 
are capable of issuing four or more instructions in parallel 
and pipelining instruction execution.   

 
In theory, current quad-issue Intel processors are able 

to execute two billion instructions per second  -- 4 in-
structions per clock and 550 M clocks per second.  In 
practice, real benchmarks see CPI (clocks per instruction) 
of 1 to 3.  The CPI is rising as processor speeds outpace 
memory latency improvements [6,7,8].   

 
The memory subsystem cannot feed data to the proc-

essor fast enough to keep the pipelines full.  Architects 
have added 2-level and 3-level caches to the processors in 
order to improve this situation, but if programs do not 
have good data locality, there is not much the architects 
can do to mask “compulsory” cache misses. 

 
Software designers are learning that careful program 

and data placement and cache sensitive algorithms with 
good locality give 3x speedups on current processors.  As 
processor speeds continue to outpace memory speeds, 
there will be increasing incentives for software designers 
to look for algorithms with small instruction cache foot-
prints, with predictable branching behavior, and with 
good or predictable data locality (i.e., clustered or sequen-
tial access). 

There is a hardware trend to design huge (256 way) 
multiprocessors that operate on a shared memory.  These 
systems are especially prone to instruction stretch in 
which bus and cache interference from other processors 
causes each processor to slow down.  Getting good per-
formance from these massive SMPs will require careful 
attention to data partitioning, data locality, and processor 
affinity. 

 
An alternative design opts for many nodes each with 

its own IO and bus bandwidth and all using a dataflow 
programming model and communicating via a high-speed 
network [15].  These designs have given rise to very im-
pressive performance, for example, the sort speed of 
computer systems has been doubling each year for the last 
15 years through a combination of increased node speed 
(about 60%/year) and parallelism (about 40%/year).  The 
1999 terabyte sort used nearly 2,000 processors and disks, 
http://research.microsoft.com/~gray/sort_benchmark.  

 
The argument for the many-little scalable design tries 

to leverage the fact that mainframe:mini:commodity price 
ratios are approximate 100:10:1. That is, mainframes cost 
about 100 times more than commodity components, and 
semi -custom mini-computers have a 10:1 markup over 
commodity components (see prices for comparable sys-
tems at the www.tpc.org benchmarks).  The cluster advo-
cates admit the many-little design is less efficient, but 
they argue that it is more cost-effective. 

 
There seems no good general rule of thumb for cpu-

caches beyond bigger-is-better and locality-is-better.  But, 
two good rules have evolved for disk data locality and 
caching.  It is possible to quantitatively estimate when 
you should cache a disk page in memory: trading off 
memory consumption against disk arm utilization.  

 
As mentioned before, disk arms are precious.  If a 

disk costs $1200 and does 120 accesses per second, then a 
disk access per second costs $10.  It would be advanta-
geous to spend up to $10, to save one access per second.  
Well, $10 buys about 10MB of RAM, so if a cache of that 
size would indeed save one access per second, it would be 
a good investment.   

 
This suggests the question: How frequently must a 

disk-resident object be accessed to justify caching it in 
main memory?”  When does the rent of RAM space bal-
ance the cost of an access?  The analysis in [16] shows 
that: 
BreakEvenReferenceInterval (seconds) = 

  PagesPerMBofRAM           x    PricePerDiskDrive      
  AccessPerSecondPerDisk       PricePerMBofDRAM 

For randomly accessed data, the first term (call the 
technology ratio) is approximately 1; the second term 
(called the economic ratio) varies from 100 to 400 today.  
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So, the breakeven interval is about 2 minutes to 5 minutes 
for randomly accessed pages. 

 
For sequentially accessed data the technology ratio is 

approximately 0.1 (1MB “pages” and 10 pages per sec-
ond) so the break-even interval is 10 to 40 seconds.  
 
This analysis gives the rules: 
19. The 5-minute random rule: cache randomly accessed 

disk pages that are re-used every 5 minutes. 
20. The 1-minute sequential rule: cache sequentially ac-

cessed disk pages that are re-used within a minute. 
 
Both of these time constants are rising slowly as 

technology evolves. 
 
A related rule that has not seen much use is that one 

can spend 1 byte of RAM to save 1 MIPS.  The argument 
goes that RAM costs about 1$/MB and today one can get 
100 extra MIPS from Intel for 100 extra dollars (ap-
proximately).  So, the marginal cost of an instruction per 
second is approximately the marginal cost of a byte.  Fif-
teen years ago, the ratio was 10:1, but since then Intel and 
VLSI has made processors much less expensive. 
21. Spend 1 byte of RAM to save 1 instruction per sec-

ond. 
 
Now consider web page caching.  Logic similar to 

the five-minute rule suggests when it pays to cache web 
pages.  The basic diagram is shown in Figure 2, where the 
link speed varies from 100 KBps for intranets, to mo dem 
speeds of 5 KBps, to wireless speeds of 1 KBps.  In case 
of a modem and wireless links, assume a local browser 
cache. For high-speed links, the cache could either be a 
browser cache or a proxy cache.  In case of a proxy, as-
sume a fast connection between the user and the cache 
(e.g., a 100Mb/s LAN), so that the time cost of accessing 
data from a remote proxy disk is not significantly larger 
than that from a local disk.   

 
Given these assumptions consider three questions: 
(1) How much does web caching imp rove response 

times? 
(2) When should a web page be cached? 
(3) How large should a web cache be?   
 
Assume that the average web object is 10KB. Define  
 R_remote: response time to access an object at server. 
 R_local: response time to access the object from cache.  
 H: cache hit ratio (fraction of requests cache satisfies). 

Then: Response_Time_Improvement =   
 R_remote - (H * R_local + (1-H) * R_remote) = 

H * (R_remote - R_local) 
 

R_remote consists the server response time and the 
download network time.  The server response time (the 
queuing delay and the service time) can range from sev-
eral hundred mi lliseconds to several seconds.  Assume a 
response time of 3 seconds. 

 
The download time over the network depends on 

network conditions and on link speeds.  WAN Links are 
typically shared, so the user bandwidth is smaller than the 
typical link bandwidth (a bottlenecked link at the server 
may further reduce the bandwidth/request).  Assume that 
the effective LAN/WAN bandwidth is 100KB/s; hence 
time to transmit a 10KB object is a tenth of a second.  
With these assumptions, the R_remote is dominated by 
the 3 second server response time. 

 
Modem bandwidth available on a dial-up link is 56 

Kbs. With compression, the effective bandwidth is often 
twice that, but there are also start/stop overheads.  As-
sume an effective modem bandwidth of 5KB/s. Hence, 
the modem transmit time for a 10 KB object is 2 seconds, 
and R_remote is 5 seconds. 

 
A mobile user on a wireless link gets 1KB/s, and so it 
takes 10 seconds to download a 10KB object and 
R_remote is 13 seconds.  This is why servers for mobile 
systems often compress the data to make the objects much 
smaller (1KB rather than 10KB).  Summarizing, 
R_remote can be estimated as: 
R_remote 
     = 3 +    .1 = 3s  (high speed connection) 
     = 3 +    2  = 5s  (modem connection) 
     = 3 + 10 = 13s  (wireless connection) 
 

R_local  depends many details, but fundamentally lo-
cal access avoids the server-time wait (assumed to be 3 
seconds). If the object is in the browser cache, local ac-
cess avoids the transmission time.  If the local access 
saves both, then the R_local is a fraction of a second. 
Hence, 
R_local = 100ms (browser cache) 

= 300ms (proxy cache intranet) 
= 2s (proxy cache modem) 
= 10s (proxy cache wireless) 

 
Proxy cache studies indicate that H_proxy_cache = 

0.4 is an upper bound [17,18].  Anecdotal evidence sug-
gests browser hit ratios are smaller: assume. 
H_browser_cache = 0.20.  Assuming a 20$/hr human 
cost, each second costs 0.55 cents.  Using that number, 
Table 3 computes the response-time savings using the 
Response_Time_Improvement equation above.  

client cache serverLinkclient cache serverLink
 

Figure 2.  The client-side or proxy web cache improves response 
time by eliminate link transmission times and server times. 
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If a user makes ten requests per hour, and uses the 
web 400 hours per year then the benefit of caching is be-
tween 3 and 14 cents per hour.  For our hypothetical user, 
this is a savings of between $12 and 48 per year.  This 
should be balanced against the cost of the disk to store the 
pages – but as mentioned earlier, $12 will buy a LOT of 
disk space.   Indeed, our hypothetical user is accessing 
4,000 10KB pages that are at most 40 MB.  This is less 
than a dollar’s worth of disk space.   
 

Having computed the savings for a cached page (Ta-
ble 3), we can now compute the point where caching a 
page begins to pay off.  Table 4 has the calculation.  The 
first column of Table 4 estimates download costs from 
Odlyzko [14 table 7] and assumes a wireless (1KBps) link 
costs $0.1/minute ($6/hr).  The second column of Table 4 
assumes desktop disks cost 30$/GB and last 3 years, 
while mobile storage devices are 30x more expensive. 
 

The break-even cost of storing a page happens when 
the storage rent matches the download cost.  The 
download cost has two components: the network time (A  
in Table 4) and the people time C.  The fourth column of 
the table shows the calculation ignoring people’s time, C.  
In that cas e the break-even interval is a year or more 
rather than many decades. When people time is included, 
the reference interval rises to many decades.  In either 
case, the table indicates that caching is very attractive: 
cache a page if will be referenced within the next 5 years 
(longer than the lifetime of the system (!)).   

 
Certainly, our assumptions are questionable, but the 

astonishing thing is that a very wide spectrum of assump-
tions concludes that a “cache everything” strategy is de-
sirable. 

How will Table 4 change with time?  Network 
speeds are predicted to increase and network costs are 
predicted to drop. Column 4, Time=A/B, may drop from 
10 months to one day.  But column 6, Time=(A+C)/B, 
will grow as people’s time grows in value, while the cost 
of technology (A and B) decline.  In summary, technol-
ogy trends suggest that web page caching will continue 
be popular, especially for bandwidth-limited mobile 
devices. 
  

How much would it cost to cache all web accesses 
for a year?  If users make 10 requests per hour with a hit 
ratio of H=0.4 the cache gets 4 hits and 6 new objects 

per user hour. For an 8-hour workday and 10KB objects, 
this adds 480KB per user per day. If H=0.2, then it adds 
640KB per user per day.  In both cases, this is about a 
penny a day. So, again we conclude a simple “cache eve-
rything” strategy is a good default.  

 
These calculations suggest the simple rule: 
22. Cache web pages if there is any chance they will be 

re-referenced within their lifetime. 
 

Web object lifetimes are bi-modal, or even tri-modal 
in some cases. Studies show median lifetimes to be a few 
days or few tens of days [19].  The average page has a 75-
day lifetime (ignoring the modalities and non-uniform 
access.)  A heuristic that recognized high-velocity pages 
would both improve usability (by not showing stale 
cached pages) and would save cache storage.  This is a 
area of active research and development. 

 
A major assumption in these calculations is that 

server performance will continue to be poor: 3 seconds on 
average.  Popular servers tend to be slow because web site 
owners are not investing enough in servers and band-
width.  With declining costs, web site owners could invest 
more and reduce the 3-second response time to less than a 
second.  If that happens, then the web cache’s people cost 
savings will evaporate, and the need for caching would be 
purely to save network bandwidth and download time -- 
which we believe will only be a scarce resource for mo-
bile devices.  
 
6. Summary 
 

Data stores will become huge.  Our biggest challenge 
is to make it easy to access and manage them.  Automat-
ing all the tasks of data organization, accesses, and pro-
tection.   

 
Disk technology is overtaking tapes, but at the same 

time disks are morphing into tape-like devices with pri-
marily sequential access to optimize the use of disk arms.  
Meanwhile, RAM improvements encourage us to build 
machines with massive main memory.  Indeed, the main 

Table 3: Shows the benefits of browser and proxy or client 
caching (pennies saved) assuming people’s time is worth 
20$/hr.  
connection cache R_remote 

seconds 
R_local 
seconds 

H 
hit 
rate 

People 
Savings 
¢/page 

LAN proxy  3 0.3 .4 0.6 
LAN browser 3 0.1 .2 0.3 

Modem proxy  5 2 .4 0.7 
Modem browser 5 0.1 .2 0.5 
Mobile proxy  13 10 .4 0.7 
Mobile browser 13 0.1 .2 1.4 

Table 4:  Caching is a very good deal:  cache web pages if they 
will be re -used within the few years. 

 A 
$/10 KB 

download 
network cost 

B 
$/10 KB 

storage/mo 

 Time =A/B 
Break-even  

cache 
storage time 

C 
People Cost 
Of download 
$ (table 3)  

Time= 
(A+C)/B 

Break Even 

Internet/LAN 1e-4 8.E-06 13 months 0.02 184 years 
Modem  2E-4 8.E-06 27 months 0.03 307 years 
Wireless 1E-2 2.E-04 44 months 0.07 30 years 
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change to Amdahl’s balanced system law is that alpha 
(=MIPS/RAM size) is rising from 1 to 10. 

 
Network bandwidth is improving at a rate that chal-

lenges many of our design assumptions.  LAN/SAN soft-
ware is being streamlined so it is no longer the bottleneck.  
This may well allow a re -centralization of computing.  

 
Still, data caching is an important optimization.  Disk 

caching still follows the 5-minute random rule and the 
one-minute sequential rule.  Web caching encourages 
designs that simply cache all pages. 
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