Current Versions of the TLA™ Tools

Leslie Lamport

5 August 2021

This document describes differences between the descriptions of the
TLAT tools in the book Specifying Systems and the currently released ver-
sions. References are to the version of the book currently available on the
web. The book and this document do not describe the features provided by
the TLA™ Toolbox for using the tools. They are described by the Toolbox’s
help pages and the TLA' Hyperbook.

https://lamport.azurewebsites.net/tla/book.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://lamport.azurewebsites.net/tla/hyperbook.html

Contents
1 SANY (The Semantic Analyzer)

2 TLC
2.1 Limitations o
2.2 Additional Features
2.2.1 Enhanced Replacement
222 Strings.
2.2.3 New Features in the TLC Module
2.2.4 The Randomization Module
2.2.5 Typed Model Values
2.2.6 Overriding Modules
2.3 Command-Line Options

3 TLATEX
3.1 Bugs

3.2 Inserting TLA" in a BTEX Document

4 PlusCal

12
12
12

13

1 SANY (The Semantic Analyzer)

The current release of SANY has no known limitations.

2 TLC

2.1 Limitations

Below are all the known ways in which the current release of TLC differs
from the version described in the book.

e TLC doesn’t implement the - (action composition) operator.

e TLC cannot handle definitions that comes from a parametrized instan-
tiation. For example, suppose and module M, which has the variable
parameter z, defines the specification Spec. If you define ISpec by

IM(x) == INSTANCE M
ISpec == IM(xbar) !Spec

then TLC will not be able to check the property ISpec. However, TLC
will be able to check ISpec if it’s defined in the following equivalent
way:

IM == INSTANCE M WITH x <- xbar
ISpec == IM!Spec

e TLC cannot handle natural numbers greater than 23! — 1.

2.2 Additional Features
2.2.1 Enhanced Replacement

Most users now run TLC from the Toolbox, where overriding of definitions
is performed in the Definition Override section of the model’s Advanced Model
Options page. Search for override in the Toolbox’s Help pages.

When running TLC from the command line, definition overriding is spec-
ified by the configuration file. As described in Specifying Systems, when
running TLC on a module M, a replacement

foo <- bar

replaces foo by bar in all operators either defined in M or imported into M
through EXTEND statements. (For example, if M extends M1 which extends
M2, then the replacement will occur in operators defined in M1 and M2,
as well as in M.) It does not perform the replacement on any operators
imported into M by an INSTANCE statement. The replacement

foo <-[Mod] bar

replaces foo by bar in all operators defined in module Mod or imported
into Mod through EXTEND statements. You should use this if you want the
replacement to be made in a module Mod that is instantiated either by the
module M on which TLC is being run, or by some module imported into M
through EXTEND statements.

An operator may be imported into the current module by multiple paths.
For example, the identifier Nat can be imported directly from the Integers
module by an EXTENDS statement or indirectly through an instantiated
module, often under a different name. In that case, to redefine Nat to equal
0..2, it’s safest to put both of the following in the configuration file:

Nat <- 0..2
Nat <- [Integers] 0..2

2.2.2 Strings

TLAT defines strings to be sequences, but the TLC implementation does
not regard them as first-class sequences. The Java implementation of the
Sequences module has been enhanced so that o and Len do what they should
for strings. For example, TLC knows that “ab” o “c” equals “abc” and
that Len(“abc”) equals 3. However, Len does not work right for strings
containing special characters written with “\”. (See the bottom of page 307
of the TLA™ book.)

2.2.3 New Features in the TLC Module

TLCGet and TLCSet
TLC can now read and set a special list of values while evaluating expres-
sions. This works as follows. The TLC module defines two new operators:

TLCGet(i) = CHOOSE n : TRUE
TLCSet(i,v) = TRUE

When TLC evaluates TLCSet (i, v), for any positive integer ¢ and arbitrary
value v, in addition to obtaining the value TRUE, it sets the i element

of the list to v. When TLC evaluates TLCGet(i), the value it obtains is
the current value of the i*® element of this list. For example, when TLC
evaluates the formula

A TLCSet(42,(“a”, 1))
AVie{1,2,3} : A Print(TLCGet(42), TRUE)
N TLCSet(42,[TLCGet(42) EXCEPT ![2] = @ 4 1])

it prints

<< "a", 1 >> TRUE
<< "a", 2 >> TRUE
<< "a", 3 >> TRUE

One use of this feature is to check TLC’s progress during long computations.
For example, suppose TLC is evaluating a formula V2 € § : P where § is
a large set, so it evaluates P many times. You can use TLCGet, TLCSet,
and Print to print something after every 1000*" time TLC evaluates P.

As explained in the description of the TLCEval operator below, you may
also want to use this feature to count how many times TLC is evaluating an
expression e. To use value number i as the counter, just replace e by

IF TLCSet(i, TLCGet(i) + 1) THEN e ELSE 42

(The ELSE expression is never evaluated.)

For certain strings str, the value of TLCGet(str) equals a number de-
scribing some aspect of TLC’s current execution. Here is the meaning of
TLCGet(str) for strings str.

"generated" The number of states generated.

"distinct" The number of distinct states found.

"queue" The number of states waiting in the queue to be processed.
"duration" The number of seconds elapsed since model checking began.

"level" The length of the path in the state graph from an initial state to
the current state.

"diameter" The maximum value of TLCGet("level") of all states exam-
ined thus far.

For the following two strings str, evaluating TLCSet(str) causes TLC to
take this action:

pause Pauses model checking.

exit Terminates model checking when all workers have finished processing
their current state.

For reasons of efficiency, TLCGet and TLCSet behave somewhat strangely
when TLC is run with multiple worker threads (using the -workers option).
Each worker thread maintains its own individual copy of the list of values on
which it evaluates TLCGet and TLCSet. The worker threads are activated
only after the computation and invariance checking of the initial states. Be-
fore then, evaluating TLCSet(i, v) sets the element ¢ of the list maintained
by all threads. Thus, the lists of all the worker threads can be initialized by
putting the appropriate TLCSet expression in an ASSUME expression or in
the initial predicate.

To allow information collected with TLCGet and TLCSet to be reported
when TLC finishes, TLC now allows the cfg file to contain the statement

POSTCONDITION Op

where Op is a constant-level operator with no arguments defined in the spec
or the model. After executing the model, TLC evaluates the operator Op.

TLCEval
TLC often uses lazy evaluation. For example, it may not enumerate the
elements of a set of the form {z € T : P(z)} unless it has to; and it doesn’t
have to if it only needs to check if an element e is in that set. (TLC can do
that by evaluating € T and P(e).) TLC uses heuristics to determine when
it should completely evaluate an expression. Those heuristics work well most
of the time. However, sometimes lazy evaluation can result in the expression
ultimately being evaluated multiple times instead of just once. This can
especially be a problem when evaluating a recursively defined operator.
You can solve this problem with the TLCFEval operator. The TLC mod-
ule defines the operator T'LCFEval by

TLCEval(z) = g

TLC evaluates the expression TLCFEval(e) by completely evaluating e.

If TLC is taking a long time to evaluate something, you can check if
lazy evaluation is the source of the problem by using the TLC module’s
TLCSet and TLCGet operators to count how many times expressions are
being evaluated, as described above.

Any

Originally, TLAT allowed only functions to be defined recursively. One prob-
lem with this was that it’s sometimes a nuisance to have to write the domain
of the function f. There were two reasons it might be a nuisance: the domain
might be complicated, or TLC might spend a lot of time when evaluating
f[z] in checking that z is in the domain of f. The operator Any was added
to the TLC module As a hack to work around this problem. With the intro-
duction of recursive operator definitions, this problem disappeared and there
is no reason to use Any. However, it is retained for backwards compatibility.
Here is its description.

The definition of the constant Any doesn’t matter. This constant has
the special property that, for any value v, TLC evaluates the expression
v € Any to equal TRUE. You can avoid having to specify the domain in a
function definition by letting the domain be Any.

The use of Any sounds dangerous, since it acts like the set of all sets
and raises the specter of Russell’s paradox. However, suppose a specification
uses Any only in function definitions without doing anything sneaky. Then
for any execution of TLC that terminates successfully, there is a finite set
that can be substituted for Any that yields the same execution of TLC.
That set is just the set of all values v for which TLC evaluates v € Any
during its execution. However, unrestricted use of Any can get TLC to
verify incorrect modules. For example, it will evaluate Any € Any to equal
TRUE, even though it equals FALSE for any actual set Any.

You should not use Any in an actual specification; it is intended only
to help in using TLC. In the actual specification, you should write the
definition like

flz € Dom] =

where the domain Dom is either defined or declared as a constant parameter.
In the configuration file, you can tell TLC to substitute Any for Dom.

PrintT
The TLC module defines

PrintT(out) = TRUE

However, evaluating PrintT (out) causes TLC to print the value of out.
This allows you to eliminate the annoying “TRUE” produced by evaluating
Print(out, TRUE).

RandomElement
The TLC module defines

RandomElement(S) = CHOOSE z € S : TRUE

so RandomElement(S) is an arbitrarily chosen element of the set S. How-
ever, contrary to what the definition says, TLC actually makes an indepen-
dent choice every time it evaluates RandomElement(S), so it could evaluate

RandomElement(S) = RandomElement(S)

to equal FALSE.

When TLC evaluates RandomElement(S), it chooses the element of S
pseudo-randomly with a uniform probability distribution. This feature was
added to enable the computation of statistical properties of a specification’s
executions by running TLC in simulation mode. We haven’t had a chance
to do this yet; let us know if you try it.

ToString

TLA™T defines ToString(v) to be an arbitrarily chosen string whose value
depends on v. TLC evaluates it to be a string that is the TLAT expression
whose value equals the value of v. By using ToString and string concatena-
tion (o) in the argument of the Print or PrintT, you can get TLC to print
nicer-looking output than it ordinarily does.

2.2.4 The Randomization Module

The RandomElement operator of the TLC module computes all the elements
of its argument set before choosing one. This makes it unusable for very
large sets Randomization module provides operators that can be used to
randomly choose a subset of a very, very large set (including a subset with
a single element).

2.2.5 Typed Model Values

One way that TLC finds bugs is by reporting an error if it tries to compare
two incomparable values—for example, a string and a set. The use of model
values can cause TLC to miss bugs because it will compare a model value to
any value without complaining (finding it unequal to anything but itself).
Typed model values have been introduced to solve this problem.

For any character 7, a model value whose name begins with the two-
character string “7_” is defined to have type 7. For example, the model

value z_1 has type . Any other model value is untyped. TLC treats untyped
model values as before, being willing to compare them to anything. However
it reports an error if it tries to compare a typed model value to anything
other than a model value of the same type or an untyped model value. Thus,
TLC will find the model value z_1 unequal to the model values z_ab2 and
none, but will report an error if it tries to compare z_1 to a_1.

2.2.6 Overriding Modules

TLC permits definitions from a module M to be overridden by Java code in
a file M .class. This is used primarily for implementing standard modules,
but it can be applied to any module if you are willing to write the appropriate
Java code. You can put the .class file in the same folder/directory as the
module’s .tla file. The files in the t1c2.module package contain examples
of how the Java code is written.

2.3 Command-Line Options

Several command-line options have been added to TLC since Specifying Sys-
tems was written. Moreover, the book did not list all the options available
then. Most users now run TLC from the Toolbox, which provides a conve-
nient way to specify the most commonly used TLC options; few people will
use command-line options. However, since there is no conveniently available
list of all those options, they are presented here. A parameter file is the
path name of a file—either an absolute path or one relative to the directory
from which TLC is run. Similarly, a parameter dir is the absolute or relative
path name of a directory.

-aril num
Adjusts the seed for random simulation. (See page 251 of the book.) It
defaults to 0 if not specified.

—-checkpoint num
Tells TLC to take a checkpoint every num minutes. The default is 30.

-cleanup
Cleans up the states directory, removing all existing checkpoint files.

-config file
Provides the configuration (.cfg) file. Defaults to spec.cfg if not provided.

—-continue
Normally, TLC stops when it finds a violation of a property it is checking.

This option tells TLC to continue running when it finds a violation of a safety
property. (It always stops when a liveness property is violated.) This option
cannot be used from the Toolbox.

-coverage num
This option tells TLC to print coverage information every num minutes.
Without the option, TLC prints no coverage information.

—-deadlock
This tells TLC not to check for deadlock.

—-debug
Tells TLC to print information useful for debugging its own code.

—-depth num
Specifies the depth (number of steps) of a random simulation. Without this
option, the default depth is 100.

-dfid num
Directs TLC to do depth-first model checking with iterative deepening, be-
ginning with initial depth num.

-difftrace
Tells TLC to show only the differences between successive states when print-
ing an error trace. Otherwise, it prints the full state descriptions.

-dump format file

The format parameter can be omitted, or it can be a comma-separated list
beginning with dot that may also contain one or both of the items colorize
and actionlabels. If format is omitted, TLC writes a list of all reachable
states, described by TLA™ formulas, on file. Otherwise, TLC writes the state
graph in dot format, the input format of the GraphViz program for displaying
graphs. The parameter colorize indicates that state transitions should be
colored according to the action generating the transition, and actionlabels
indicates that they should be labeled with the name of the action.

-fp num
TLC’s state fingerprinting algorithm uses one of a list of irreducible poly-
nomials, numbered 0 through 130. This option tells it to use polynomial
number num. Through release version 1.5.7 of the tools, The default is to
used number 0. In later versions the default will be to use a randomly chosen
one.

-fpbits num
Directs TLC to partition its fingerprint set into 2™ separate disk files.
(On some systems, using multiple files can improve efficiency of reading and
writing fingerprints when they don’t fit in memory.) The default value of
num is 0.

10

-fpmem num
Tells TLC how much memory to use to store the fingerprints of found states.
If num is an integer, it specifies the number of megabytes; it it’s a fraction
between 0 and 1, it specifies that fraction of the memory size.The default
value of num is .25.

-gzip
This tells TLC to compress the state queue when writing it to disk.

-help
Causes TLC to output a help message containing the information in this
section and stop.

—lncheck param
If this is omitted or param equals default, TLC performs liveness checking
periodically, roughly whenever the number of distinct states it finds increases
by 10%. If param equals final, TLC does liveness checking only after it has
computed the complete state graph.

-maxSetSize num
The cardinality of the largest set that TLC can handle. TLC reports an error
if it tries to compute a set containing more elements. It defaults to 1000000
if this option is not specified.

-metadir dir
Tells TLC to store its metadata in the directory given by dir. Without this
option, the default is to use the states subfolder of the directory containing
the specification file.

-modelcheck
Tells TLC to run in model checking mode, which is the default.

-nowarning
Tells TLC not to issue any warnings. Otherwise, TLC reports all warnings.
(A warning indicates a possible error, but does not cause TLC to stop.)

-recover dir
Recover from the checkpoint found in the directory specified by dir. If not
specified, TLC performs a fresh execution of the model.

-seed num
Provide the seed for the pseudo-random number generator used for random
simulation. Defaults to a randomly chosen seed if not specified.

-simulate file=pname num=num
This tells TLC to run in simulation mode. If the file argument is present,
then TLC writes each trace it finds to the file whose name, including complete
directory path, is pname. If the num argument is present, then num is the

11

number of behaviors to generate. Either or both arguments may be omitted;
if both are present, they must be separated by a comma.

-terse
Tells TLA not to expand values in the output produced by Print and PrintT.
If not specified, the values are expanded.

-tool
Tells TLC to print its output in a format to be read by a program such as
the Toolbox.

-userFile file
It tells TLC to write output produced by the Print and PrintT operators in

file.

-view
If the configuration file specifies a VIEW, then this option tells TLC to apply
that view to the states when printing an error trace.

-workers num or auto
Specifies the number of TLC worker threads, where auto means to use as
many threads as there are cores on the computer. Without this option, TLC
uses only a single worker thread.

3 TLATEX
3.1 Bugs

There are some bugs in TLATEX that cause an occasional misalignment in
the output. TLATEX also doesn’t do a good job of formatting CASE state-
ments. We would appreciate suggestions for how CASE statements should
be formatted.

3.2 Inserting TLAT in a BETEX Document

There is a version of TLATEX for typesetting pieces of TLA™ specifications
in a KTREX document. In the .tex file, you put

\begin{tla}
An arbitrary portion of a TLA™T specification
\end{tla}

Running TLATEX on the file inserts a tlatex environment immediately
after this tla environment that contains the typeset version of that portion

12

of the TLA™ specification, replacing any previous version of the tlatex
environment.

There are analogous IXTEX pcal and ppcal environments for formatting
PlusCal code. The pcal environment is for code written in PlusCal’s C-
syntax; the ppcal environment is for P-syntax code.

You run this version of TLATEX with the command “java tlatex.TeX”.
Executing

java tlatex.TeX -info

will type out reasonably detailed directions on using the program.

4 PlusCal

The PlusCal manual describes the current release of the PlusCal translator.
It can be found here.

13

https://lamport.azurewebsites.net/tla/learning.html

