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ABSTRACT

Complex triangle meshes arise naturally in many areas of computer
graphics and visualization. Previous work has shown that a quadric
error metric allows fast and accurate geometric simplification of
meshes. This quadric approach was recently generalized to handle
meshes with appearance attributes. In this paper we present an im-
proved quadric error metric for simplifying meshes with attributes.
The new metric, based on geometric correspondence in 3D, requires
less storage, evaluates more quickly, and results in more accurate
simplified meshes.

Meshes often have attribute discontinuities, such as surface
creases and material boundaries, which require multiple attribute
vectors per vertex. We show that a wedge-based mesh data structure
captures such discontinuities efficiently and permits simultaneous
optimization of these multiple attribute vectors. In addition to the
new quadric metric, we experiment with two techniques proposed
in geometric simplification, memoryless simplification and volume
preservation, and show that both of these are beneficial within the
quadric framework. The new scheme is demonstrated on a variety
of meshes with colors and normals.

Additional Keywords: level of detail, mesh decimation, multiresolution.

1 INTRODUCTION

Complex triangle meshes occur extensively in computer graphics
as the result of geometric modeling operations, global illumina-
tion simulations, and reconstructions from 3D scans. Because such
meshes are difficult to store, transmit, and render, several tech-
niques have been developed for geometrically simplifying them
(e.g. [1, 4, 6, 8, 9, 10, 13, 17]). However, meshes often have associ-
ated appearance attributes at their vertices, such as normals, colors,
and texture coordinates, and relatively few techniques account for
these attributes during simplification [1, 2, 5, 7, 10] as reviewed in
Section 2. This paper presents a new technique for efficiently and
accurately simplifying meshes with attribute data.

Among mesh simplification metrics, the quadric error metric in-
troduced by Garland and Heckbert [6] holds much promise because
it is both fast and reasonably accurate. Their more recent work [7]
generalizes this approach to deal with appearance attributes as sum-
marized in Section 3. In this paper, we build upon that work by de-
veloping an improved quadric error metric for simplifying meshes
with attributes. The new metric offers the following advantages:

� It more intuitively measures error based on geometric correspon-
dence in R3.

� It requires less storage, since its space complexity is linear on
the number of attributes.

� It evaluates more quickly since the quadric matrix is sparse.
� It results in more accurate simplifications, as demonstrated by

results.
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Figure 1: Edge collapse transformation.

Appearance attributes are not always continuous over the surface
of the mesh. To deal with attribute discontinuities (such as creases),
we extend the quadric scheme to a wedge-based mesh data structure,
as described in Section 5.

In Section 6, we present two enhancements to the quadric sim-
plification scheme, inspired by the recent geometric simplification
method of Lindstrom and Turk [15]. The enhancements are mem-
oryless simplification and volume preservation. Results of quanti-
tative testing of all the combinations indicate that the new quadric
metric, memoryless simplification, and volume preservation all con-
tribute to improved accuracy, and do so in order of decreasing impor-
tance. As shown in Section 7, the quality of the results is surprisingly
good. The simplified meshes are generally just as accurate, with
respect to both geometry and attributes, as similar ones produced
by the more expensive optimization in [10].

Notation In this paper, we describe a triangle mesh M by its
set of vertices V and its set of faces F. Each vertex v � V has
a geometric position pv � R3 and a set of m attribute scalars
denoted by sv � Rm. These two elements form a column vector
vv = ( pv

sv
) � R3+m. (We also refer to arbitrary vectors in R3+m

using the notation v = ( ps ) � R3+m.) A mesh with (r� g� b) vertex
colors therefore has m = 3, and a mesh with both colors and normals
has m = 6. Each triangle face f � F is denoted as a vertex triplet
(v1� v2� v3).

2 PREVIOUS WORK

Most recent geometric simplification schemes coarsen a mesh
through a sequence of edge collapse transformations, shown in Fig-
ure 1. These transformations have the advantage that their inverses
can be stored concisely to form a progressive mesh representa-
tion [10].

In a simplification scheme based on edge collapses, two issues
must be resolved: (1) the position and attributes v to assign to the
unified vertex, and (2) the order in which to perform edge collapses.
A common approach is to define a single cost metric C to determine
both. The unified vertex is assigned the value v minimizing C(v),
and the same cost C(v) is used to order the candidate edge collapses.
We now briefly review some previous approaches to defining C(v).



Geometric simplification of meshes Guéziec [8] constrains
edge collapses to preserve mesh volume, and bounds the maximum
geometric approximation error through a framework of tolerance
volumes. Hoppe et al. [10, 12] sample a set of points on the original
mesh, and define C(v) as the sum of their squared distances to
the approximating mesh; one drawback is that the subset of points
that must be reprojected grows as the mesh is simplified. Kobbelt
et al. [13] also sample points on the original mesh, but constrain their
maximum distance to the approximating mesh, and use a fairness
functional to order the edge collapses.

Ronfard and Rossignac [17] associate to each original vertex
the set of planes spanned by its adjacent faces, merge these sets
of planes after each edge collapse, and define C(v) as the sum of
squared distances from v to its associated planes; again a drawback
is that these plane sets grow as the mesh is simplified. Garland and
Heckbert [6] show that this same C(v) can be efficiently represented
as a compact quadric error metric (QEM), as reviewed in Section 3.

Lindstrom and Turk [15] define C(v) as a sum of squared tetra-
hedral volumes between the two mesh neighborhoods of Figure 1.
Specifically, each tetrahedron is formed by the vertex v and a face
f � Fi+1. Because each tetrahedral volume is proportional to the
distance of v from the plane spanning f , the metric C(v) can be seen
as an instance of a QEM over the neighborhood Fi+1 where the met-
ric on each face f � Fi+1 is weighted by the squared area of f . (This
observation does not appear in their paper [15].) A major difference
from the earlier scheme [6] is that the error metric is defined over
the mesh simplified so far instead of the original mesh. We refer to
this as the memoryless version of QEM simplification. Lindstrom
and Turk also use constraints to preserve volume and boundaries.

Simplification of meshes with appearance attributes Ba-
jaj and Schikore [1] track geometric and attribute errors on faces
of the mesh to obtain error-bounded simplifications of meshes with
attributes. Hoppe [10] extends the point sampling approach to
also include attributes in the cost metric, but decouples geometric
optimization from attribute optimization when minimizing C(v).
Garland and Heckbert [7] generalize their earlier QEM scheme to
deal with surface properties, as summarized in Section 3. In this
paper, we describe another, more intuitive generalization that proves
to be more accurate and efficient.

Cohen et al. [5] simplify meshes with explicit texture coordinates.
By tracking parametric instead of geometric correspondence, their
scheme bounds the displacement of a point on the mesh with any
given texture coordinate, which is the correct metric for texture-
mapped surfaces. Our scheme, like [1, 7, 10], seeks to minimize
the attribute deviation at any given point on the surface. This is the
correct metric for vertex attributes like colors and normals that do
not define a parametrization on the surface.

Image-based approaches When the attribute field on the orig-
inal mesh has complex detail, it may be difficult to significantly
coarsen the mesh without quickly degrading this detail. An alterna-
tive approach is to capture attribute fields as sampled texture images
on the mesh faces [3, 5, 14, 16, 18]. In our opinion, such an image-
based approach will gain wide acceptance as more rasterization
operations (normal maps, displacement maps, etc.) are integrated
into the hardware. However, there are still many attribute fields
that are most concisely represented as piecewise-linear functionals
using vertex attributes. The discontinuous normal field of Figure 12
and the radiosity solution of Figure 13 are good examples.

3 PREVIOUS QUADRIC ERROR METRICS

Simplification of geometry The original QEM scheme [6]
addresses the case m = 0. It defines on each face f of the origi-
nal mesh a quadric Qf (v) equal to the squared distance of a point

v=(p) � R3 to the plane containing the face. (The derivation of Qf

will follow shortly.) Each vertex v of the original mesh is assigned
the sum of quadrics on its adjacent faces weighted by face area:

Qv(v) =
X
f�v

area(f ) � Qf (v) � (1)

After each edge collapse (v1� v2)� v, the new vertex v is assigned
the position v minimizing Qv(v) = Qv1 (v) + Qv2 (v), and the next
edge collapse chosen is the one with the lowest such minimum.

Let us now derive Qf (v) for a given face f = (v1� v2� v3). Re-
call that v = (p) when m = 0. The signed distance of p to the
plane P � R3 containing f is nTp + d, where the face normal
n = (p2�p1)� (p3�p1)�k(p2�p1)� (p3�p1)k and the scalar
d = �nT p1. As an aside, a different formulation is to obtain these
parameters by solving the linear system�
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with the additional constraint that knk = 1.

The squared distance between point p and plane P is therefore

Qf (v=(p)) = (nT
v + d)2 = v

T(nnT )v + 2dnT
v + d2 �

which can be represented as a quadratic functional vTAv+2bTv+c
where A is a symmetric 3�3 matrix, b is a column vector of size
3, and c is a scalar [6]. Thus,

Qf = (A�b� c) =
� �

nnT
�
�
�

d n
�
� d2

�
is stored using 6 + 3 + 1 = 10 coefficients. The advantage of this
representation is that the quadric Qv of Equation 1 is obtained using
simple linear combinations of these coefficient vectors.1

After an edge collapse, the vertex position vmin minimizing Qv(v)
is found where the gradient (rQv(v) = 2Av + 2b) equals zero,
which is obtained by solving the linear system

Avmin = �b � (2)

Simplification of geometry and attributes In [7], Garland
and Heckbert extend their framework to deal with vertex attributes
(m � 0). Their approach is to generalize the distance-to-plane
metric in R3 to a distance-to-hyperplane in R3+m. That is, Qf (v)
for v = ( ps ) � R3+m is defined as the distance in R3+m from v

to the affine subspace P� � R3+m spanned by the three vertices
(v1�v2�v3).

Let v� denote the projection of v onto this affine subspace. The
error Qf (v) = kv � v�k2 can be seen as the sum of two terms, the
geometric distance error kp�p�k2 and the attribute deviation error
ks � s�k2. Observe that the point p� does not correspond to the
projection of p onto the plane P � R3 as it did previously. The
effect is thatv is generally not compared to the geometrically closest
point, but to some geometrically farther point that has a closer
attribute value. As a consequence, the metric may underestimate
the actual error, as shown in Section 4.

The quadric Qf (v) consists of a matrixA of size (3+m)�(3+m), a
column vector b of size 3+m, and a scalar c. Because the matrix A
resulting from the above formulation is dense, storage of Q requires
a total of (4+m)(5+m)�2 coefficients, which is quadratic on m.

To trade off geometric accuracy and attribute accuracy, the user
specifies for each attribute j � f1 � � �mg a relative importance
weight �j that pre-multiplies the attribute values, effectively scaling
some axes in R3+m. For scale-invariance, the mesh is resized to
tightly fit in the unit cube.

1Such a quadric can also be represented in homogeneous form as a single
4�4 symmetric matrix, but we find the (A� b� c) notation more convenient.



4 NEW QUADRIC ERROR METRIC

Our contribution is to introduce a new quadric that defines both geo-
metric error and attribute error based on geometric correspondence
in 3D (see Figure 2). Rather than projecting a given point p onto
the mesh face in an abstract higher-dimensional space R3+m, we
perform the projection in R3 and compute geometric and attribute
error based on this correspondence.

The error metric for a face f is defined as the sum

Qf (v=(ps )) = Qf
p(v) +

mX
j=1

Qf
sj (v)

where the geometric error Qf
p(v) is the squared distance from p

to its projection p� on the plane P � R3 containing f , and the
attribute error Qf

sj (v) is the squared deviation between s and the
value s� interpolated from face f at that projected point p�. Let us
now derive these terms.

The geometric error term is simply a zero-extended version of
that in [6]:

Qf
p = (A�b� c) =
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where the line dividers in A and b mark the first 3 rows and 3
columns.

To form the attribute error term Qf
sj , we first define a linear func-

tional

�sj(p) = gT
j p + dj

that represents the expected attribute value at all points p � R3.
The gradient gj and scalar dj are defined as follows. Naturally,�sj(p)
should interpolate the face vertices f = (( p1

s1
)� ( p2

s2
)� ( p3

s3
)) and

thus match the linear interpolant over the plane P. In addition,�sj(p)
for an arbitrary p � R3 should be identical to the value�sj(p�) at its
geometric projection on P; this is equivalent to setting nT gj = 0.
Thus gj is simply the gradient of the scalar function over the triangle
face. Parameters (gj� dj) are computed by solving the 4 � 4 linear
system
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rearrangement we obtain Qf
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where the value 1 appears in A3+j�3+j and the �dj appears in b3+j.
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(p’,s’)
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|p-p’| = geometric error

(|s-s’| = attribute error)

Figure 2: Correspondence between point p with attribute s and its
projection onto the plane spanning face (v1� v2� v3).

Example m Previous Q New Q

geometry 0 10 10
+ color 3 28 23
+ normals 6 55 35

+ texture coord. 8 78 43
in general m�0 (4+m)(5+m)�2 11+4m

Table 1: Number of coefficients necessary to represent Q for various
numbers m of scalar attributes, for [7] and for our new scheme.

Summing all of these quadrics together yields Qf = (A�b� c) = (�
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). Note that the first 3 rows and the first 3 columns of A are dense,
but that the remaining m � m submatrix is the identity I. Recall
that a set of weights �j is used to scale attribute errors relative to
geometric error. If one were to define Q = Qp +

P
j �

2
j Qsj , the

submatrix would have the weights �2
j on its diagonal. We use the

simpler approach of pre-scaling the attribute values sj by �j prior to
constructing and evaluating Q. In either case, the m�m submatrix is
always a constant matrix times a scalar factor, and thus requires only
one coefficient of storage. Overall, Q requires 11+4m coefficients,
which is now linear on m (see Table 1).

Some attributes such as color channels have bounded extents
(e.g. 0 � r� g� b � 1). The vmin found in Equation 2 may con-
tain attributes outside these linear inequality constraints. A fall-
back strategy when this occurs could be to solve a more expensive
“constrained quadratic programming” problem. We have chosen
to simply truncate the attributes to their bounds and re-evaluate
Qv(v) there. Similarly, surface normal attributes should remain
normalized. However, quadratic minimization subject to quadratic
constraints is an even more difficult problem, so again we leave these
attributes unconstrained and renormalize the optimized values.

Figure 3 demonstrates the improvement in accuracy provided by
the new quadric metric. The original mesh is a regular planar grid
whose vertex colors are sampled from the “mandrill” image. The
simplified meshes are obtained without the enhancements described
later in Section 6. The values �1� �2� �3 scaling the (r� g� b) color
channels relative to the unit size image are all set to � = 1. It
should be noted that for planar geometry, the previous QEM [7]
obtains progressively better results as � is decreased, converging to
our QEM as � approaches 0 (but not at � = 0). The reason is that
the hyperplane P� � R3+m becomes more parallel to the P � R3.
Quantitative results for the “mandrill” simplification appear later in
Table 2.



(a) Original mesh (79,202 faces) (b) Simplified using Q from [7] (c) Simplified using our new Q

Figure 3: Result of simplifying a vertex-colored 200�200 mesh down to 1,000 faces using the previous QEM [7] and using our new QEM.
Mesh edges are rendered on the left half of each image. Weights �j relating color to geometric accuracy are set to 1.

5 ATTRIBUTE DISCONTINUITIES

Meshes often have discontinuities in their attribute fields. For in-
stance, a crease is a path of edges on a mesh across which normals
are discontinuous. In radiosity solutions, intensities on adjacent
patches are generally different if the patches are not parallel. Mod-
eling such discontinuities involves storing multiple sets of attribute
values per vertex. For this purpose we have chosen to introduce
wedges [11] into our data structure (Figure 4).

A vertex is partitioned into k � 1 wedges, each wedge wi having
its own attribute vector si. The corner of each face adjacent to the
vertex is assigned to one of the wedges. The quadric Qwi (p� si) at
wedge wi is the area-weighted sum of Qf for its subset of adjacent
faces,

Qw(v) =
X
f�w

area(f ) � Qf (v) � (3)

and Equation 1 is replaced by

Qv(p� s1� � � � � sk) =
kX

i=1

Qwi (p� si) � (4)

The new vertex quadric Qv has dimension 3 + km. Note that this
variable-sized quadric Qv need never be stored explicitly in the
mesh, as it is straightforward to construct from the Qwi when an edge
collapse is considered. Minimizing this quadric Qv produces both
the vertex position and all of its wedge attributes simultaneously.

For an edge collapse, the earlier strategy of merging vertex
quadrics as Qv(v) = Qv1 (v) + Qv2 (v) must be redefined to act on
wedge quadrics instead. Referring to Figure 5, we unify the wedges
w�a and w�b following an edge collapse if both wa and wb extended
into face f1 prior to the edge collapse, and similarly on the other side
for face f2. For each pair of unified wedges (0, 1, or 2 pairs), we sum
together their wedge quadrics. These rules reproduce the original
scheme when both vertices v1 and v2 each have a single wedge.

One last detail is that we preserve the geometry of discontinuity
curves by associating an additional quadric with every sharp edge
(including boundary edges), as described in [7]. In our framework
this edge quadric is added to the Qw(v) on the 4 corners adjacent to
the edge (or 2 corners in the case of a boundary edge).

6 SIMPLIFICATION ENHANCEMENTS

Besides defining the new QEM, we also experimented with two tech-
niques, memoryless simplification and volume preservation, and
found that they further improve results.

vertex

wedge

face

corner

Figure 4: Wedge-based mesh representation.
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Figure 5: Tests for wedge unification after edge collapse.

6.1 Memoryless simplification

Instead of assigning Qw(v) to wedges in the original mesh and sum-
ming these through each edge collapse as Qv(v) = Qv1 (v) + Qv2 (v),
we experimented with the alternative approach of memoryless sim-
plification, in which Qw(v) is redefined based on the geometry and
attributes of the mesh simplified so far. Thus, when evaluating an
edge collapse (v1� v2) � v, we compute Qv(v) using Equations 3
and 4 over the set of faces Fi+1 in Figure 1. As mentioned earlier,
the squared tetrahedral volumes used in [15] give rise to a similar
metric except that it weights each Qf by the square of its face area.

As shown in the results of Section 7, we confirm the surprising
finding [15] that memoryless simplification improves the accuracy
of results. Although this may seem counter-intuitive at first, it
can be explained by the illustration in Figure 6. The ovals denote
the freedom of the vertices to move within the surface without
significantly increasing Qv(v). With the standard QEM scheme the
Qv are computed on the original mesh and subsequently summed.
As a result, the merging of the non-parallel ovals (corresponding
to fine level features) gives rise to tight spherical quadrics that lock
vertices and prevent further simplification, even though the resulting
mesh is planar.



stops simplifying in this region

Standard QEM Memoryless QEM

locked

Figure 6: Illustration of standard QEM and memoryless QEM sim-
plification. The dashed ovals symbolize the shapes of the quadric
functionals Qv

p; (a) in the standard scheme they are are computed
once in a preprocess and subsequently summed during simplifica-
tion; (b) in the memoryless scheme they are computed using the
mesh simplified so far.
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Figure 7: For a polygonal curve in R2, illustration of trade-off
between geometric accuracy (Qp = 0) and attribute accuracy (Qs =
0). Attribute accuracy can cause bias towards the center of curvature
when the attribute gradient is high.

In contrast, with memoryless simplification, the Qv are recom-
puted at the coarser level based on the geometry simplified so far, in
this case the planar surface. This ability to forget finer level detail
allows simplification to proceed further when desirable.

Although memoryless simplification makes storing QEM’s un-
necessary, to speed up the algorithm we have found it useful to
cache the values (area(f ) � Qf (v)) on the faces of the mesh, updat-
ing them appropriately as edges are collapsed. For this reason the
compact size of our new QEM is still advantageous.

6.2 Volume preservation

Experiments reveal that the new QEM sometimes shrinks the model
geometry in areas of high attribute gradient. That is, the new vertex
v may be pushed towards the center of curvature of the surface at
sharp attribute transitions.

The intuition for this effect is illustrated in Figure 7 using sim-
plification of a polygonal curve in R2. The scalar field defined over
the original model transitions from 1 to 0 to 1 to 0. Clearly an edge
collapse over this neighborhood will not be able to preserve this
complicated attribute field. Let us consider the errors measured by
the quadric metric.

After the edge collapse on the upper right, the geometry is
preserved exactly (Qp = 0), but the attribute error Qs cannot be
made zero. The reason is that the attribute value a for the vertex
v = (2� 1� a) cannot simultaneously interpolate the attribute gradi-
ents on all 3 original segments. In particular, a would have to be set
to �� to extrapolate the leftmost segment [(0� 1� �)� (1� 1� �)].

On the other hand, the edge collapse on the lower right results
in geometric error (Qp � 0), but “achieves” Qs = 0 since the
projection of v = (1� 0� �) onto each of the original 3 line segments
exactly interpolates the original attributes. Intuitively, the motion of
the vertex towards the center of curvature allows it to project onto
the interiors of the original line segments, thus avoiding attribute
extrapolation.

To counteract this bias towards geometric shrinkage, we introduce
a volume preservation constraint. As shown in [8, 15], preserving
volume during an edge collapse is equivalent to a linear constraint

g
T
VOL p + dVOL = 0

on the position p of the unified vertex v. The volumetric gradient
gVOL is the sum of the face normals of Fi+1 (Figure 1) weighted by
one third their face areas. Minimizing Qv(v) subject to that linear
constraint is easily achieved using a system with one Lagrange
multiplier �:�

A gVOL

gT
VOL 0

��
vmin

�

�
=

�
� b

�dVOL

�
�

This system (or even that of Equation 2) may be ill-conditioned
if the mesh neighborhood has zero Gaussian curvature, i.e. if it is
planar or cylindrical. Note that the attributes cannot contribute any
zero singular values because the k submatrices of size m � m on
the diagonal of A are all the identity I. When the system is ill-
conditioned, we set p = (p1 + p2)�2 and solve for fs1� � � � � skg in
the remaining system.

7 RESULTS

We implemented a simplification testbed to explore various error
metrics and simplification options. Because of its generality, our
testbed is not designed for speed; it attains simplification rates of
only 150–400 faces/second on a 450 MHz Pentium II processor.
However, the elements of our scheme have already been shown to
be fast [6, 7, 15]. In particular, the new QEM is faster to evaluate
than in [7] due to its sparse structure. However, memoryless sim-
plification requires more QEM constructions as in [15]. Based on
the results in [7, 15], we expect that an optimized implementation
would have simplification rates on the order of 10,000 faces/second.

For quantitatively measuring the accuracy of simplified meshes,
we use an approach similar to [6]. The distance between two meshes
MA and MB is obtained by sampling a collection of points from MA

and measuring their distances to their closest points on MB. Because
this is a non-symmetric process, the same number of points is also
sampled from MB and projected on MA. Both sets of distances
are combined, and statistics are reported using rms (L2 norm) and
maximum (L� norm) values. For meshes with attributes, we also
sample the attributes at the same points and measure their deviations
from the values linearly interpolated at the closest point on the other
mesh.

Table 2 presents quantitative results for the simplification of the
planar mandrill model. The column of maximum errors is de-
emphasized because these values are noisier (e.g. Figure 9) and
seem less correlated with perceived accuracy. The table shows that,
with few exceptions, all three simplification options improve results.
The number marked with a ‘y’ in Table 2 deserves more explanation.
One would not expect it to be so different from the number in the
next row since volume preservation should be irrelevant for a planar
mesh. The explanation is that numerical noise in the mesh geometry
is gradually amplified by the combination of the “shrinkage effect”
(Figure 7) and memoryless re-evaluation, until the geometry undu-
lates significantly. Fortunately, volume preservation eliminates this
undesirable behavior, as discussed in Section 6.2.



(a) Original mesh (b) Simplified using [7] (c) Simplified using our scheme

Figure 8: Simplification of a vertex-colored mesh of 135,133 faces down to 1,500 faces.

Simplification options rms max
New Q Memoryless �Vol=0 color error color error

0.086 0.57p
0.087 0.61p
0.082 0.57p p
0.082 0.54p
0.068 0.48p p
0.068 0.76p p

y 0.071 0.59p p p
0.054 0.33

(time-intensive scheme [10]) 0.056 0.33

Table 2: Quantitative accuracy results for 1000-face “mandrill”
meshes as in Figure 3, with and without (1) the new QEM, (2)
memoryless simplification, and (3) volume preservation. The top
row therefore corresponds to the scheme of [7], and the bottom row
to our new scheme. The more expensive method from [10] is also
included for comparison.

Simplification options Rms error
New Q �Vol=0 Memoryless Geometry Color

0.00135 0.035p
0.00113 0.035p
0.00091 0.029p p
0.00089 0.029p
0.00167 0.035p p
0.00127 0.035p p
0.00109 0.027p p p
0.00099 0.027

(time-intensive scheme [10]) 0.00095 0.027

Table 3: Results for 1500-face head meshes as in Figure 8.

Figure 8 shows the simplification of a more general vertex-colored
mesh, and Table 3 shows its associated accuracy numbers. For this
mesh, we set � = 0�1 for the color attribute channels. Figures 9
and 10 plot error as a function of simplified mesh complexity. The
new scheme clearly outperforms the previous QEM scheme [7],
often requiring less than half as many faces for the same rms error.
It also matches or outperforms the slower scheme of [10] over the
most useful range of simplification complexity.

Figure 11 demonstrates the importance of including surface nor-
mal attribute values in the simplification metric. Although the mesh
in Figure 11b is in fact geometrically more accurate than that in
Figure 11c, its fuzzy surface normal field makes it less useful. Gen-
erally we set � = 0�02 for surface normal attributes. Figures 12
and 13 show simplifications of meshes with attribute discontinu-
ities. The mesh of Figure 12 has only creases, whereas the mesh of
Figure 13 has both normal and color discontinuities. Table 4 com-
pares accuracy results for all the figures using the PM scheme [10],
the previous QEM [7], and the new QEM.

8 SUMMARY AND FUTURE WORK

We have described a new quadric error metric for simplifying tri-
angle meshes with appearance attributes. The new metric captures
both geometric error and attribute error based on closest-point cor-
respondence in 3D, rather than in an abstract higher-dimensional
space. We have demonstrated that this new metric produces more
accurate simplifications. Moreover, it requires less storage and
evaluates more quickly.

Associating the quadrics with a wedge-based data structure per-
mits efficient simplification of models with attribute discontinu-
ities, as was demonstrated on models with creases and illumination
discontinuities. The previously introduced techniques of memory-
less simplification and volume preservation further improve results.
Surprisingly, the accuracy of the new scheme generally matches or
exceeds that of a much slower optimization method.

In future work, it would be desirable to measure parametric er-
ror (instead of geometric error) for the simplification of texture-
coordinate attributes [5]. Perhaps the quadric approach can be
extended to provide a useful approximation in this context.
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(a) Original mesh (b) Q is just geometric error (c) Q also includes normals

Figure 11: Simplification of a mesh of 920,000 faces down to 10,000 faces. For the geometric simplification in (b), normals are simply
carried through. In (c) we optimize both geometry and normals, using � = 0�02 for normals.

(a) Original mesh (42,712 faces) (b) Simplified mesh (5,000 faces)

Figure 12: Simplification of a mesh with discontinuities on normal attributes (indicated by the thick lines).

(a) Original mesh (298,468 faces) (b) Simplified mesh (5,000 faces)

Figure 13: Simplification of a mesh with discontinuities of color attributes.
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